*Result*: Hybrid Drive Simulation Architecture for Power Distribution Based on the Federated Evolutionary Monte Carlo Algorithm.
*Further Information*
*Modern active distribution networks are increasingly characterized by high complexity, uncertainty, and distributed clustering, posing challenges for traditional model-based simulations in capturing nonlinear dynamics and stochastic variations. This study develops a data–model hybrid-driven simulation architecture that integrates a Federated Evolutionary Monte Carlo Optimization (FEMCO) algorithm for distribution network optimization. The model-driven module employs spectral clustering to decompose the network into multiple autonomous subsystems and performs distributed reconstruction through gradient descent. The data-driven module, built upon Long Short-Term Memory (LSTM) networks, learns temporal dependencies between load curves and operational parameters to enhance predictive accuracy. These two modules are fused via a Random Forest ensemble, while FEMCO jointly leverages Monte Carlo global sampling, Federated Learning-based distributed training, and Genetic Algorithm-driven evolutionary optimization. Simulation studies on the IEEE 33 bus distribution system demonstrate that the proposed framework reduces power losses by 25–45% and voltage deviations by 75–85% compared with conventional Genetic Algorithm and Monte Carlo approaches. The results confirm that the proposed hybrid architecture effectively improves convergence stability, optimization precision, and adaptability, providing a scalable solution for the intelligent operation and distributed control of modern power distribution systems. [ABSTRACT FROM AUTHOR]*