Result: Computational simulation of cranial soft tissue expansion on the cranium during early postnatal growth in humans.

Title:
Computational simulation of cranial soft tissue expansion on the cranium during early postnatal growth in humans.
Authors:
Manson A; Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS) and Human Anatomy Resource Centre (HARC), Education Directorate, University of Liverpool, Liverpool, UK., Jeffery N; Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS) and Human Anatomy Resource Centre (HARC), Education Directorate, University of Liverpool, Liverpool, UK.
Source:
Journal of anatomy [J Anat] 2026 Feb; Vol. 248 (2), pp. 237-250. Date of Electronic Publication: 2025 Jan 23.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Blackwell Publishing Country of Publication: England NLM ID: 0137162 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-7580 (Electronic) Linking ISSN: 00218782 NLM ISO Abbreviation: J Anat Subsets: MEDLINE
Imprint Name(s):
Publication: 2002- : Oxford : Blackwell Publishing
Original Publication: London, Cambridge Univ. Press [etc.].
References:
Evol Anthropol. 2014 Mar-Apr;23(2):65-75. (PMID: 24753347)
Am J Phys Anthropol. 2004 Jan;123(1):78-90. (PMID: 14669239)
Philos Trans R Soc Lond B Biol Sci. 2003 Sep 29;358(1437):1429-35. (PMID: 14561333)
Am J Phys Anthropol. 2000;Suppl 31:117-69. (PMID: 11123839)
J Biomech Eng. 2012 Jan;134(1):011005. (PMID: 22482660)
Sci Rep. 2019 Feb 13;9(1):1956. (PMID: 30760811)
iScience. 2024 Jul 29;27(9):110617. (PMID: 39220256)
Acta Odontol Scand. 1995 Jun;53(3):196-202. (PMID: 7572097)
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2123553119. (PMID: 35914174)
J Biomech Eng. 2009 Oct;131(10):101001. (PMID: 19831471)
J Anat. 2024 Nov;245(5):686-698. (PMID: 38822698)
Nat Methods. 2012 Jul;9(7):671-5. (PMID: 22930834)
Neuroimage. 2012 Sep;62(3):1499-509. (PMID: 22713673)
Nature. 2011 Nov 09;480(7375):91-3. (PMID: 22080949)
Anat Rec (Hoboken). 2018 Mar;301(3):528-537. (PMID: 29418115)
Am J Phys Anthropol. 2008 Sep;137(1):30-40. (PMID: 18398846)
Bone. 2004 Feb;34(2):271-80. (PMID: 14962805)
Sci Rep. 2023 Jun 14;13(1):9641. (PMID: 37316540)
Nature. 2004 Mar 25;428(6981):415-8. (PMID: 15042088)
Phys Rev Lett. 2017 Jun 16;118(24):248101. (PMID: 28665667)
Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13010-5. (PMID: 25157149)
J Neuroimaging. 2009 Jan;19(1):37-46. (PMID: 18494772)
J Anat. 2006 Nov;209(5):637-54. (PMID: 17062021)
Dev Dyn. 2021 Mar;250(3):414-449. (PMID: 33314394)
Magn Reson Imaging. 2012 Nov;30(9):1323-41. (PMID: 22770690)
J R Soc Interface. 2017 May;14(130):. (PMID: 28566514)
J Korean Neurosurg Soc. 2016 May;59(3):192-6. (PMID: 27226848)
Am J Phys Anthropol. 2021 Jan;174(1):76-88. (PMID: 32803773)
J Anat. 2026 Feb;248(2):237-250. (PMID: 39853736)
J Anat. 2009 Sep;215(3):240-55. (PMID: 19531085)
Ann Anat. 2015 Jan;197:59-66. (PMID: 25458178)
Anat Rec (Hoboken). 2022 Jan;305(1):81-99. (PMID: 34369671)
PLoS One. 2013;8(4):e59990. (PMID: 23565180)
Am J Phys Anthropol. 2019 Jan;168 Suppl 67:27-46. (PMID: 30680710)
J Anat. 2021 Jun;238(6):1284-1295. (PMID: 33438210)
Anat Rec (Hoboken). 2007 Sep;290(9):1112-20. (PMID: 17721983)
Integr Comp Biol. 2019 Sep 1;59(3):669-683. (PMID: 31243431)
Ann N Y Acad Sci. 2004 Jun;1021:77-85. (PMID: 15251877)
J Dent Res. 1978 Sep-Oct;57(9-10):904-8. (PMID: 102671)
Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):581-98. (PMID: 42062)
Sci Rep. 2018 Apr 16;8(1):6042. (PMID: 29662127)
J Anat. 2021 Feb;238(2):480-488. (PMID: 32996582)
J Anat. 2013 Apr;222(4):397-409. (PMID: 23425043)
Am J Phys Anthropol. 1993 Jul;91(3):305-24. (PMID: 8333488)
Acta Anat (Basel). 1994;149(1):55-62. (PMID: 8184659)
J Neurosci. 2008 Nov 19;28(47):12176-82. (PMID: 19020011)
J Anat. 2017 Jan;230(1):85-105. (PMID: 27503252)
Philos Trans R Soc Lond B Biol Sci. 2023 Jul 3;378(1880):20220083. (PMID: 37183904)
Am J Phys Anthropol. 2018 Oct;167(2):291-310. (PMID: 30168867)
Am J Hum Biol. 2013 Nov-Dec;25(6):725-32. (PMID: 24038669)
Surg Radiol Anat. 2020 Jul;42(7):741-748. (PMID: 32266441)
Cell Tissue Res. 2005 Nov;322(2):183-9. (PMID: 16041600)
Brain. 1996 Oct;119 ( Pt 5):1763-74. (PMID: 8931596)
J Anat. 2020 Jan;236(1):105-116. (PMID: 31691965)
Mech Res Commun. 2012 Jun 1;42:118-125. (PMID: 22904576)
J Anat. 2023 Oct;243(4):590-604. (PMID: 37300248)
Contributed Indexing:
Keywords: Procrustes; brain; cranium; geometric morphometrics; growth; integration; ontogeny
Entry Date(s):
Date Created: 20250124 Date Completed: 20260107 Latest Revision: 20260109
Update Code:
20260130
PubMed Central ID:
PMC12779400
DOI:
10.1111/joa.14211
PMID:
39853736
Database:
MEDLINE

Further Information

The importance of interactions between neighbouring rapidly growing tissues of the head during development is recognised, yet this competition for space remains incompletely understood. The developing structures likely interact through a variety of mechanisms, including directly genetically programmed growth, and are mediated via physiological signalling that can be triggered by structural interactions. In this study, we aimed to investigate a different but related potential mechanism, that of simple mechanical plastic deformation of neighbouring structures of the head in response to soft tissue expansion during human postnatal ontogeny. We use computational modelling and normative real-world data to evaluate the potential for mechanical deformation to predict early postnatal cranial shape changes in humans. We test some aspects of the spatial packing hypothesis applied to the growing brain and masticatory muscles, and their effects on the cranium, with a particular focus on the basicranium and face. A simple finite element model of an early postnatal human cranium, brain and masticatory muscles was created from CT and MRI. Growth of the brain and muscles was simulated using a tissue expansion material. The effect of the expanding soft tissues on the cranium was assessed using geometric morphometrics, comparing the baseline model to simulation results, and also to normative cranial shape data collected from neonatal MRI (0-4 months of age). Findings revealed that cranial shape changes present in the normative sample were consistent with cranial base flexion and were largely allometric (size-linked). Simulation of brain expansion produced broadly similar shape changes of the basicranium with most growth occurring in the cranial vault, while masticatory muscle expansion produced smaller and more widespread changes throughout the cranium. When simulated together, expansion of the masticatory muscles exerted a constraining effect on the results of brain expansion. Our findings that the simple growth simulations were able to mimic biological growth suggest that the relationship between regions of the developing head may be partly structural within the first few months of postnatal ontogeny in humans.
(© 2025 The Author(s). Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.)