Treffer: Modeling alternative splicing variants from RNA-Seq data with isoform graphs.
PLoS Comput Biol. 2008 Aug 08;4(8):e1000147. (PMID: 18688268)
Nat Biotechnol. 2010 May;28(5):511-5. (PMID: 20436464)
Nat Rev Genet. 2010 Jan;11(1):31-46. (PMID: 19997069)
Nat Protoc. 2012 Mar 01;7(3):562-78. (PMID: 22383036)
Genome Res. 2001 Nov;11(11):1952-7. (PMID: 11691860)
Genome Res. 2004 May;14(5):976-87. (PMID: 15123595)
Bioinformatics. 2005 May 1;21(9):1859-75. (PMID: 15728110)
Bioinformatics. 2012 Apr 15;28(8):1086-92. (PMID: 22368243)
BMC Bioinformatics. 2012 Apr 12;13 Suppl 5:S2. (PMID: 22537006)
J Mol Biol. 1990 Oct 5;215(3):403-10. (PMID: 2231712)
Bioinformatics. 2002;18 Suppl 1:S181-8. (PMID: 12169546)
BMC Bioinformatics. 2011 Dec 14;12 Suppl 14:S2. (PMID: 22373417)
Nat Biotechnol. 2011 May 15;29(7):644-52. (PMID: 21572440)
Algorithms Mol Biol. 2011 Apr 19;6(1):9. (PMID: 21504602)
BMC Bioinformatics. 2012 Apr 19;13 Suppl 6:S5. (PMID: 22537044)
Genome Biol. 2006;7 Suppl 1:S2.1-31. (PMID: 16925836)
Nat Rev Genet. 2011 Nov 29;13(1):36-46. (PMID: 22124482)
J Comput Biol. 2011 Mar;18(3):305-21. (PMID: 21385036)
Trends Genet. 2002 Apr;18(4):186-93. (PMID: 11932019)
Weitere Informationen
Next-generation sequencing (NGS) technologies need new methodologies for alternative splicing (AS) analysis. Current computational methods for AS analysis from NGS data are mainly based on aligning short reads against a reference genome, while methods that do not need a reference genome are mostly underdeveloped. In this context, the main developed tools for NGS data focus on de novo transcriptome assembly (Grabherr et al., 2011 ; Schulz et al., 2012). While these tools are extensively applied for biological investigations and often show intrinsic shortcomings from the obtained results, a theoretical investigation of the inherent computational limits of transcriptome analysis from NGS data, when a reference genome is unknown or highly unreliable, is still missing. On the other hand, we still lack methods for computing the gene structures due to AS events under the above assumptions--a problem that we start to tackle with this article. More precisely, based on the notion of isoform graph (Lacroix et al., 2008), we define a compact representation of gene structures--called splicing graph--and investigate the computational problem of building a splicing graph that is (i) compatible with NGS data and (ii) isomorphic to the isoform graph. We characterize when there is only one representative splicing graph compatible with input data, and we propose an efficient algorithmic approach to compute this graph.