Treffer: Distribution of Voltage-Gated Sodium Channels and Scaffolding Proteins on Vestibular Calyx Ending Delineates the Axon Initial Segment.
Original Publication: Philadelphia Wistar Institute of Anatomy and Biology
Exp Brain Res. 2000 Feb;130(3):277-97. (PMID: 10706428)
Ann Otol Rhinol Laryngol. 1991 May;100(5 Pt 1):398-406. (PMID: 1708955)
J Neurophysiol. 1996 Sep;76(3):1942-57. (PMID: 8890305)
J Neurosci Res. 2003 Aug 15;73(4):465-70. (PMID: 12898531)
Exp Brain Res. 2011 May;210(3-4):607-21. (PMID: 21350807)
Nat Rev Neurosci. 2015 Sep;16(9):511-9. (PMID: 26243570)
Front Pharmacol. 2013 Oct 01;4:126. (PMID: 24098284)
Front Cell Neurosci. 2014 Sep 23;8:297. (PMID: 25294986)
J Neurophysiol. 2020 Aug 1;124(2):510-524. (PMID: 32667253)
Mol Pain. 2015 Sep 25;11:60. (PMID: 26408173)
Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2207466120. (PMID: 36595693)
J Assoc Res Otolaryngol. 2014 Oct;15(5):739-54. (PMID: 25091536)
Sci Adv. 2018 Nov 28;4(11):eaau8621. (PMID: 30498783)
J Neurophysiol. 2005 Jan;93(1):251-66. (PMID: 15240767)
J Physiol. 2017 Feb 1;595(3):777-803. (PMID: 27633787)
Acta Otolaryngol Suppl. 1956;126:1-85. (PMID: 13326368)
Neuron. 2012 Jan 26;73(2):235-47. (PMID: 22284179)
J Neurosci. 1999 Sep 1;19(17):7516-28. (PMID: 10460258)
Physiol Rev. 1996 Jul;76(3):887-926. (PMID: 8757791)
Dev Neurobiol. 2010 May;70(6):436-55. (PMID: 20155736)
Nat Neurosci. 2009 Aug;12(8):996-1002. (PMID: 19633666)
Neuron. 2003 Oct 9;40(2):297-318. (PMID: 14556710)
J Neurophysiol. 2005 Jan;93(1):267-80. (PMID: 15240768)
iScience. 2021 Feb 20;24(3):102205. (PMID: 33748701)
J Comp Neurol. 2026 Feb;534(2):e70127. (PMID: 41605845)
Acta Otolaryngol Suppl. 1954;116:298-303. (PMID: 13188694)
J Neurosci. 2007 May 30;27(22):5903-14. (PMID: 17537961)
Neuron Glia Biol. 2006 May;2(2):69-79. (PMID: 16652168)
J Neurosci. 1998 Sep 15;18(18):7487-501. (PMID: 9736667)
Prog Neurobiol. 2014 Jan;112:1-23. (PMID: 24184323)
Mol Cell Neurosci. 2002 Jun;20(2):283-97. (PMID: 12093160)
Nat Rev Neurosci. 2006 Jul;7(7):548-62. (PMID: 16791144)
J Neurophysiol. 2023 Jun 1;129(6):1468-1481. (PMID: 37198134)
Front Cell Neurosci. 2018 Nov 14;12:423. (PMID: 30487736)
Front Cell Neurosci. 2019 Sep 27;13:436. (PMID: 31611777)
J Neurophysiol. 1990 Apr;63(4):767-80. (PMID: 2341875)
J Neurosci. 2004 Feb 4;24(5):1236-44. (PMID: 14762142)
J Neurophysiol. 2011 Aug;106(2):608-19. (PMID: 21562192)
J Neurophysiol. 1988 Jul;60(1):167-81. (PMID: 3404215)
Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4914-9. (PMID: 10781098)
J Neurophysiol. 2016 May 1;115(5):2536-55. (PMID: 26936982)
J Biol Chem. 2015 Jul 3;290(27):16619-32. (PMID: 25998125)
J Neurophysiol. 2007 Feb;97(2):1684-704. (PMID: 17065252)
J Neurosci. 2008 Dec 31;28(53):14329-40. (PMID: 19118165)
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4473-8. (PMID: 22396594)
Eur Arch Otorhinolaryngol. 2001 Feb;258(2):67-73. (PMID: 11307608)
J Physiol. 2005 Dec 15;569(Pt 3):801-16. (PMID: 16210352)
Curr Opin Neurobiol. 2008 Jun;18(3):307-13. (PMID: 18801432)
J Neurosci. 2004 Mar 31;24(13):3176-85. (PMID: 15056697)
J Neurophysiol. 2017 May 1;117(5):1969-1986. (PMID: 28202575)
J Neurosci. 2005 Jul 20;25(29):6857-68. (PMID: 16033895)
Neuron. 1988 Apr;1(2):105-16. (PMID: 3272160)
J Neurosci. 2009 Mar 11;29(10):3103-8. (PMID: 19279247)
Trends Neurosci. 2002 Jan;25(1):2-5. (PMID: 11801321)
Front Cell Neurosci. 2019 Oct 15;13:456. (PMID: 31680869)
J Neurophysiol. 2014 Sep 1;112(5):1091-104. (PMID: 24872539)
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10232-7. (PMID: 20534576)
J Neurophysiol. 2007 Sep;98(3):1083-101. (PMID: 17596419)
Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4333-8. (PMID: 10760300)
J Physiol. 2020 Feb;598(4):853-889. (PMID: 31623011)
J Neurosci. 2013 Feb 20;33(8):3706-24. (PMID: 23426697)
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4051-6. (PMID: 23341597)
Front Neurol. 2024 Nov 18;15:1471118. (PMID: 39624672)
eNeuro. 2016 Feb 13;3(1):. (PMID: 27022619)
J Physiol. 2014 Nov 15;592(22):4825-38. (PMID: 25172941)
Cold Spring Harb Perspect Biol. 2009 Dec;1(6):a003012. (PMID: 20457566)
J Neurosci. 2016 Feb 17;36(7):2111-8. (PMID: 26888923)
Brain Struct Funct. 2013 Jul;218(4):1005-16. (PMID: 22886464)
J Neurosci. 2001 Aug 15;21(16):5952-61. (PMID: 11487618)
Curr Top Membr. 2013;72:1-37. (PMID: 24210426)
J Biol Chem. 1995 Feb 3;270(5):2352-9. (PMID: 7836469)
Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15753-7. (PMID: 9861042)
Annu Rev Neurosci. 2011;34:501-34. (PMID: 21469959)
J Neurophysiol. 2019 Dec 1;122(6):2548-2567. (PMID: 31693427)
PLoS Biol. 2005 Dec;3(12):e423. (PMID: 16292983)
J Neurosci. 2003 Mar 15;23(6):2306-13. (PMID: 12657689)
J Cell Biol. 2004 Sep 27;166(7):983-90. (PMID: 15381686)
Neuroscience. 2020 Feb 1;426:69-86. (PMID: 31846752)
J Gen Physiol. 2014 Apr;143(4):481-97. (PMID: 24638995)
J Cell Biol. 1998 Nov 30;143(5):1305-15. (PMID: 9832558)
Hear Res. 1994 May;75(1-2):151-60. (PMID: 8071142)
Physiol Rev. 2009 Jul;89(3):847-85. (PMID: 19584315)
J Neurophysiol. 2010 Oct;104(4):2034-51. (PMID: 20660422)
Pflugers Arch. 2007 Jun;454(3):451-9. (PMID: 17273863)
J Neurosci. 2001 Dec 15;21(24):9529-40. (PMID: 11739564)
J Comp Neurol. 2001 Jan 1;429(1):166-76. (PMID: 11086297)
J Neurosci. 2014 Oct 29;34(44):14536-50. (PMID: 25355208)
Neuron. 2001 Apr;30(1):91-104. (PMID: 11343647)
Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):E7184-E7192. (PMID: 29991598)
Elife. 2024 Dec 03;13:. (PMID: 39625061)
Curr Opin Neurobiol. 2014 Aug;27:96-102. (PMID: 24705243)
Exp Brain Res. 1992;89(1):105-8. (PMID: 1601088)
J Assoc Res Otolaryngol. 2012 Dec;13(6):745-58. (PMID: 22825486)
Front Neurosci. 2021 Oct 25;15:733291. (PMID: 34759790)
J Neurosci. 2011 Jul 6;31(27):10101-14. (PMID: 21734302)
J Cell Biol. 2007 Aug 27;178(5):875-86. (PMID: 17709431)
Am J Physiol Cell Physiol. 2008 Jan;294(1):C372-9. (PMID: 18032528)
Mol Cell Neurosci. 2008 Oct;39(2):180-92. (PMID: 18621130)
Exp Eye Res. 2009 Jan;88(1):57-64. (PMID: 19007774)
PLoS One. 2015 Jul 16;10(7):e0133485. (PMID: 26182346)
Nat Rev Neurosci. 2021 Jan;22(1):7-20. (PMID: 33239761)
Neuroscience. 2012 Dec 27;227:232-46. (PMID: 23032932)
Curr Top Membr. 2013;72:159-92. (PMID: 24210430)
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5421-6. (PMID: 24706862)
EMBO J. 2006 Feb 8;25(3):642-52. (PMID: 16437162)
PLoS Comput Biol. 2020 Jul 23;16(7):e1008087. (PMID: 32701953)
Brain Res Mol Brain Res. 2002 Sep 30;105(1-2):19-28. (PMID: 12399104)
Weitere Informationen
The amniote inner ear contains an unusual type of hair cell and a unique postsynaptic calyx terminal with specialized ion channel expression and afferent transmission mechanisms. The calyceal afferent terminal enwraps the hair cell and leads to a heminode. It has morphological and functional microdomains with distinct complements of potassium channels and scaffolding proteins. Stimulation of hair cells gives rise to postsynaptic potentials in the membrane facing the hair cell that propagate along the outer face of the calyx and parent axon to the heminode, giving rise to spikes with timing and response properties that vary with location (epithelial zone) and afferent morphology (calyx-only vs. dimorphic with additional bouton terminals). Heminodes of calyx-only afferents lie within the epithelium, placing the calyces themselves closer to the heminode. We report that diverse voltage-gated sodium (Na <subscript>V</subscript> ) channel proteins (including Na <subscript>V</subscript> 1.1-1.3, 1.5. 1.6, 1.8, and 1.9), HCN (hyperpolarization-activated cyclic nucleotide-gated) channels, and associated scaffolding proteins (ankyrins, βIV-spectrin, and ezrin) are differentially deployed across calyx microdomains, and specific complements of proteins also vary with innervation zone in vestibular epithelia. Our results suggest the calyx outer surface plays a role analogous to an axon initial segment in central neurons, and that systematic variation in Na <subscript>V</subscript> pore-forming subunits underlies differences in firing properties of vestibular afferents in different epithelial zones.
(© 2026 The Author(s). The Journal of Comparative Neurology published by Wiley Periodicals LLC.)