*Result*: Lipid Metabolism as a Target Site in Pest Control.

Title:
Lipid Metabolism as a Target Site in Pest Control.
Authors:
Toprak U; Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey. utoprak@agri.ankara.edu.tr., İnak E; Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey., Nauen R; Bayer AG, Crop Science Division, Monheim, Germany. ralf.nauen@bayer.com.
Source:
Advances in experimental medicine and biology [Adv Exp Med Biol] 2026; Vol. 1494, pp. 519-547.
Publication Type:
Journal Article; Review
Language:
English
Journal Info:
Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 0121103 Publication Model: Print Cited Medium: Print ISSN: 0065-2598 (Print) Linking ISSN: 00652598 NLM ISO Abbreviation: Adv Exp Med Biol Subsets: MEDLINE
Imprint Name(s):
Publication: 1998- : New York : Kluwer Academic/Plenum Publishers
Original Publication: New York, Plenum Press.
References:
Abdel-Fatah RM, Mohamed SM, Aly AA, Sabry AKH (2019) Biochemical characterization of spiromesifen and spirotetramat as lipid synthesis inhibitors on cotton leaf worm, Spodoptera littoralis. Bull Natl Res Cent 43(1):65. https://doi.org/10.1186/s42269-019-0107-9. (PMID: 10.1186/s42269-019-0107-9)
Abrisqueta M, Süren-Castillo S, Maestro JL (2014) Insulin receptor-mediated nutritional signalling regulates juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochem Mol Biol 49:14–23. https://doi.org/10.1016/j.ibmb.2014.03.005. (PMID: 10.1016/j.ibmb.2014.03.00524657890)
Al Baki MA, Lee DW, Jung JK, Kim Y (2019) Insulin signaling mediates previtellogenic development and enhances juvenile hormone-mediated vitellogenesis in a lepidopteran insect. Maruca Vitrata BMC Dev Biol 19(1):1–14. https://doi.org/10.1186/s12861-019-0194-8. (PMID: 10.1186/s12861-019-0194-8)
Alabaster A, Isoe J, Zhou G, Lee A, Murphy A, Day WA, Miesfeld RL (2011) Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti. Insect Biochem Mol Biol 41(12):946–955. https://doi.org/10.1016/j.ibmb.2011.09.004. (PMID: 10.1016/j.ibmb.2011.09.004219714823210400)
Ali AM, Mohamed DS, Shaurub ESH, Elsayed AM (2017) Antifeedant activity and some biochemical effects of garlic and lemon essential oils on Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). J Entomol Zool Stud 5(3):1476–1482.
Alimohamadi N, Samih M, Izadi H, Shahidi Noghabi S (2014) Developmental and biochemical effects of hexaflumuron and spirodiclofen on the ladybird beetle, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). J Crop Prod 3(3):335–344.
Almeida MG, Arêdes DS, Majerowicz D, Færgeman NJ, Knudsen J, Gondim KC (2020) Expression of acyl-CoA-binding protein 5 from Rhodnius prolixus and its inhibition by RNA interference. PLoS One 15(1):e0227685. https://doi.org/10.1371/journal.pone.0227685. (PMID: 10.1371/journal.pone.0227685319352506959561)
Alves-Bezerra M, Ramos I, Paula IF, Maya-Monteiro CM, Klett EL, Coleman RA, Gondim KC (2017) Deficiency of glycerol-3-phosphate acyltransferase 1 decreases triacylglycerol storage and induces fatty acid oxidation in insect fat body. Biochim Biophys Acta (BBA), Mol Cell Biol Lipids 1862(3):324–336. https://doi.org/10.1016/j.bbalip.2016.12.004. (PMID: 10.1016/j.bbalip.2016.12.004)
Araújo RA, Guedes RNC, Oliveira MGA, Ferreira GH (2008) Enhanced activity of carbohydrate-and lipid-metabolizing enzymes in insecticide-resistant populations of the maize weevil. Sitophilus Zeamais Bull Entomol Res 98(4):417–424. https://doi.org/10.1017/S0007485308005737. (PMID: 10.1017/S000748530800573718279568)
Arêdes DS, De Paula IF, Santos-Araujo S, Gondim KC (2022) Silencing of mitochondrial trifunctional protein a subunit (HADHA) increases lipid stores, and reduces oviposition and flight capacity in the vector insect Rhodnius prolixus. Front Insect Sci 2:885172. https://doi.org/10.3389/finsc.2022.885172. (PMID: 10.3389/finsc.2022.8851723846876910926480)
Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225. https://doi.org/10.1146/annurev-ento-112408-085356. (PMID: 10.1146/annurev-ento-112408-085356197257723075550)
Atay T, Alkan M, Ertürk S, Toprak U (2023) Individual and combined effects of α-pinene and a native diatomaceous earth product on control of stored product beetle pests. J Asia Pac Entomol 26(4):102149. https://doi.org/10.1016/j.aspen.2023.102149. (PMID: 10.1016/j.aspen.2023.102149)
Atay T, Ertürk S, Alkan M, Kordali Ş, Yılmaz F, Barış A, Ghanbari S, Doğan C, Toprak U (2024) Boron compounds are effective on Tribolium castaneum (Coleoptera: Tenebrionidae): reduced lipogenesis and induced weight loss. Arch Insect Biochem Physiol 115:e22098. https://doi.org/10.1002/arch.22098. (PMID: 10.1002/arch.2209838500442)
Athanassiou CG, Kavallieratos NG, Andris NS (2004) Insecticidal effect of three diatomaceous earth formulations against adults of Sitophilus oryzae (Coleoptera:Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae) on oat, rye and triticale. J Econ Entomol 97:2160e2167. https://doi.org/10.1093/jee/97.6.2160. (PMID: 10.1093/jee/97.6.2160)
Badieinia F, Khajehali J, Nauen R, Dermauw W, Van Leeuwen T (2020) Metabolic mechanisms of resistance to spirodiclofen and spiromesifen in Iranian populations of Panonychus ulmi. Crop Prot 105166. https://doi.org/10.1016/j.cropro.2020.105166.
Bajda S, Dermauw W, Greenhalgh R, Nauen R, Tirry L, Clark RM, Van Leeuwen T (2015) Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. BMC Genomics 16(1):974. https://doi.org/10.1186/s12864-015-2157-1. (PMID: 10.1186/s12864-015-2157-1265813344652392)
Balabanidou V, Kampouraki A, MacLean M, Blomquist GJ, Tittiger C, Juárez MP, Mijailovsky SJ, Chalepakis G, Anthousi A, Lynd A, Antoine S, Hemingway J, Ranson H, Lycett GJ, Vontas J (2016) Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci USA 113(33):9268–9273. https://doi.org/10.1073/pnas.1608295113. (PMID: 10.1073/pnas.1608295113274398664995928)
Balabanidou V, Grigoraki L, Vontas J (2018) Insect cuticle: a critical determinant of insecticide resistance. Curr Opin Insect Sci 27:68–74. https://doi.org/10.1016/j.cois.2018.03.001. (PMID: 10.1016/j.cois.2018.03.00130025637)
Bass C, Nauen R (2023) The molecular mechanisms of insecticide resistance in aphid crop pests. Insect Biochem Mol Biol 156:103937. https://doi.org/10.1016/j.ibmb.2023.103937. (PMID: 10.1016/j.ibmb.2023.10393737023831)
Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM, Foster SP, Gutbrod O, Nauen R, Slater R, Williamson MS (2014) The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem Mol Biol 51:41–51. https://doi.org/10.1016/j.ibmb.2014.05.003. (PMID: 10.1016/j.ibmb.2014.05.00324855024)
Baumbach J, Hummel P, Bickmeyer I, Kowalczyk KM, Frank M, Knorr K, Kühnlein RP (2014a) A drosophila in vivo screen identifies store-operated calcium entry as a key regulator of adiposity. Cell Metab 19(2):331–343. https://doi.org/10.1016/j.cmet.2013.12.004. (PMID: 10.1016/j.cmet.2013.12.00424506874)
Baumbach J, Xu Y, Hehlert P, Kühnlein RP (2014b) Gαq, Gγ1 and Plc21C control drosophila body fat storage. J Genet Genomics 41(5):283–292. https://doi.org/10.1016/j.jgg.2014.03.005. (PMID: 10.1016/j.jgg.2014.03.00524894355)
Bensafi-Gheraibia H, Menail AH, Soltani N (2013) Activity of a lipid synthesis inhibitor (spiromesifen) in Drosophila melanogaster: lipid levels and peroxydation, and effects on offspring. Bull Soc Zool Fr 138(1/4):189–199.
Bi J, Wang W, Liu Z, Huang X, Jiang Q, Liu GY, Huang X (2014) Seipin promotes adipose tissue fat storage through the ER Ca 2+ -ATPase SERCA. Cell Metab 19(5):861–871. https://doi.org/10.1016/j.cmet.2014. (PMID: 10.1016/j.cmet.201424807223)
Bielza P, Moreno I, Belando A, Grávalos C, Izquierdo J, Nauen R (2019) Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. Pest Manag Sci 75(1):45–52. https://doi.org/10.1002/ps.5144. (PMID: 10.1002/ps.514430009510)
Binh TD, Pham TL, Men TT, Dang TT, Kamei K (2019) LSD-2 dysfunction induces dFoxO-dependent cell death in the wing of Drosophila melanogaster. Biochem Biophys Res Commun 509(2):491–497. https://doi.org/10.1016/j.bbrc.2018.12.132. (PMID: 10.1016/j.bbrc.2018.12.13230595382)
Bouabida H, Tine-djebbar F, Tine S, Soltani N (2017a) Activity of a lipid synthesis inhibitor (spiromesifen) in Culiseta longiareolata (Diptera: Culicidae). Asian Pac J Trop Biomed 7(12):1120–1124. https://doi.org/10.1016/j.apjtb.2017.10.015. (PMID: 10.1016/j.apjtb.2017.10.015)
Bouabida H, Tine-Djebbar F, Tine S, Soltani N (2017b) Activity of spiromesifen on growth and development of Culex pipiens (Diptera: Culicidae): toxicological, biometrical and biochemical aspects. J Entomol Zool Stud 5:572–577.
Bretschneider T, Benet-Buchholz J, Fischer R, Nauen R (2003) Spirodiclofen and spiromesifen–novel acaricidal and insecticidal tetronic acid derivatives with a new mode of action. CHIMIA Int J Chem 57(11):697–701. https://doi.org/10.2533/000942903777678588. (PMID: 10.2533/000942903777678588)
Brinzer RA, Henderson L, Marchiondo AA, Woods DJ, Davies SA, Dow JA (2015) Metabolomic profiling of permethrin-treated Drosophila melanogaster identifies a role for tryptophan catabolism in insecticide survival. Insect Biochem Mol Biol 67:74–86. https://doi.org/10.1016/j.ibmb.2015.09.009. (PMID: 10.1016/j.ibmb.2015.09.00926474926)
Broehan G, Kroeger T, Lorenzen M, Merzendorfer H (2013) Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genomics 14(1):6. https://doi.org/10.1186/1471-2164-14-6. (PMID: 10.1186/1471-2164-14-6233244933560195)
Buszczak M, Lu X, Segraves WA, Chang TY, Cooley L (2002) Mutations in the midway gene disrupt a drosophila acyl coenzyme a: diacylglycerol acyltransferase. Genetics 160(4):1511–1518. https://doi.org/10.1093/genetics/160.4.1511. (PMID: 10.1093/genetics/160.4.1511119733061462074)
Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H, Chen J, Zhang W (2010) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 19(6):777–786. https://doi.org/10.1111/j.1365-2583.2010.01038.x. (PMID: 10.1111/j.1365-2583.2010.01038.x20726907)
Chen JX, Lyu ZH, Wang CY, Cheng J, Lin T (2020) RNA interference of a trehalose-6-phosphate synthase gene reveals its roles in the biosynthesis of chitin and lipids in Heortia vitessoides (Lepidoptera: Crambidae). Insect Sci 27(2):212–223. https://doi.org/10.1111/1744-7917.12650. (PMID: 10.1111/1744-7917.1265030397994)
Cheng Y, Li Y, Li W, Song Y, Zeng R, Lu K (2020) Effect of hepatocyte nuclear factor 4 on the fecundity of Nilaparvata lugens: insights from RNA interference combined with transcriptomic analysis. Genomics 112(6):4585–4594. https://doi.org/10.1016/j.ygeno.2020.08.002. (PMID: 10.1016/j.ygeno.2020.08.00232763353)
Cheng LY, Hou DY, Sun QZ, Yu SJ, Li SC, Liu HQ, Cong L, Ran C (2022) Biochemical and molecular analysis of field resistance to spirodiclofen in Panonychus citri (McGregor). Insect 13(11):1011. https://doi.org/10.3390/insects13111011. (PMID: 10.3390/insects13111011)
Cheon H-M, Woon S, Bian G, Park J-H, Raikhel AS (2006) Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes aegypti. J Biol Chem 281:8426–8435. https://doi.org/10.1074/jbc.M510957200. (PMID: 10.1074/jbc.M51095720016449228)
Clements J, Groves RL, Cava J, Barry CC, Chapman S, Olson JM (2019) Conjugated linoleic acid as a novel insecticide targeting the agricultural pest Leptinotarsa decemlineata. PLoS One 14(11):e0220830. https://doi.org/10.1371/journal.pone.0220830. (PMID: 10.1371/journal.pone.0220830317257286855466)
Clements J, Olson JM, Sanchez-Sedillo B, Bradford B, Groves RL (2020) Changes in emergence phenology, fatty acid composition, and xenobiotic-metabolizing enzyme expression is associated with increased insecticide resistance in the Colorado potato beetle. Arch Insect Biochem Physiol 103(3):e21630. https://doi.org/10.1002/arch.21630. (PMID: 10.1002/arch.2163031621115)
Cossolin J, Pereira M, Martínez LC, Turchen LM, Fiaz M, Bozdoğan H, Serrão JE (2019) Cytotoxicity of Piper aduncum (Piperaceae) essential oil in brown stink bug Euschistus heros (Heteroptera: Pentatomidae). Ecotoxicology 28(7):763–770. https://doi.org/10.1007/s10646-019-02072-8. (PMID: 10.1007/s10646-019-02072-831254186)
Dângelo RAC, Michereff-Filho M, Campos MR, Da Silva PS, Guedes RNC (2018) Insecticide resistance and control failure likelihood of the whitefly Bemisia tabaci (MEAM1; B biotype): a Neotropical scenario. Ann Appl Biol 172(1):88–99. https://doi.org/10.1111/aab.12404. (PMID: 10.1111/aab.12404)
Demaeght P, Dermauw W, Tsakireli D, Khajehali J, Nauen R, Tirry L, Vontas J, Lümmen P, Van Leeuwen T (2013) Molecular analysis of resistance to acaricidal spirocyclic tetronic acids in Tetranychus urticae: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. Insect Biochem Mol Biol 43(6):544–554. https://doi.org/10.1016/j.ibmb.2013.03.007. (PMID: 10.1016/j.ibmb.2013.03.00723523619)
Deng P, Xu QY, Fu KY, Guo WC, Li GQ (2018) RNA interference against the putative insulin receptor substrate gene Chico affects metamorphosis in Leptinotarsa decemlineata. Insect Biochem Mol Biol 103:1–11. https://doi.org/10.1016/j.ibmb.2018.10.001. (PMID: 10.1016/j.ibmb.2018.10.00130296480)
De Rouck S, İnak E, Dermauw W, Van Leeuwen T (2023). A review of the molecular mechanisms of acaricide resistance in mites and ticks. Insect Biochem Mol Biol 159:103981. https://doi.org/10.1016/j.ibmb.2023.103981.
Devine MD (1997) Mechanisms of resistance to acetyl-coenzyme a carboxylase inhibitors: a review. Pestic Sci 51(3):259–264. https://doi.org/10.1002/(SICI)1096-9063(199711)51:3<259::AID-PS644>3.0.CO;2-S. (PMID: 10.1002/(SICI)1096-9063(199711)51:3<259::AID-PS644>3.0.CO;2-S)
Dhadialla TS, Carlson GR, Le DP (1998) New insecticides with ecdysteroidal and juvenile hormone activity. Annu Rev Entomol 43:545–569. https://doi.org/10.1146/annurev.ento.43.1.545. (PMID: 10.1146/annurev.ento.43.1.5459444757)
Doğan C, Hänniger S, Heckel DG, Coutu C, Hegedus DD, Crubaugh L, Groves RL, Amutkan Mutlu D, Suludere Z, Bayram Ş, Toprak U (2021) Characterization of calcium signaling proteins from the fat body of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae): implications for diapause and lipid metabolism. Insect Biochem Mol Biol 133:103549. https://doi.org/10.1016/j.ibmb.2021.103549. (PMID: 10.1016/j.ibmb.2021.10354933610660)
Dong X, Chen J, Xu R, Li X, Wang Y, Pan X, Zhang C, Li Y, Wang F, Li C (2022) Molecular identification and lipid mobilization role of adipokinetic hormone receptor in Spodoptera litura (F.). Bull Entomol Res 112(6):758–765. https://doi.org/10.1017/S0007485322000141. (PMID: 10.1017/S000748532200014135431022)
Douris V, Denecke S, Van Leeuwen T, Bass C, Nauen R, Vontas J (2020) Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: drosophila and beyond. Insect Biochem Mol Biol 167:104595. https://doi.org/10.1016/j.pestbp.2020.104595. (PMID: 10.1016/j.pestbp.2020.104595)
Du M, Yin X, Zhang S, Zhu B, Song Q, An S (2012) Identification of lipases involved in PBAN stimulated pheromone production in Bombyx mori using the DGE and RNAi approaches. PLoS One 7(2):e31045. https://doi.org/10.1371/journal.pone.0031045. (PMID: 10.1371/journal.pone.0031045223595643281041)
Ebeling W (1971) Sorptive dusts for pest control. Annu Rev Entomol 16:123e158. https://doi.org/10.1146/annurev.en.16.010171.001011. (PMID: 10.1146/annurev.en.16.010171.001011)
Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14:3–8. https://doi.org/10.1111/j.1365-2583.2004.00529.x. (PMID: 10.1111/j.1365-2583.2004.00529.x15663770)
Ertürk S, Atay T, Toprak U, Alkan M (2020) The efficacy of different surface applications of wettable powder formulation of Detech® diatomaceous earth against rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae). J Stored Prod Res 89:101725. https://doi.org/10.1016/j.jspr.2020.101725. (PMID: 10.1016/j.jspr.2020.101725)
Ertürk S, Atay T, Alkan M, Kordali Ş, Yılmaz F, Ghanbari S, Doğan C, Toprak U (2024) Boron compounds are effective on Sitophilus granarius (Coleoptera: Curculionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae). J Stored Prod Res 107:102337. https://doi.org/10.1016/j.jspr.2024.102337. (PMID: 10.1016/j.jspr.2024.102337)
Feng X, Li M, Liu N (2018) Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica. Insect Biochem Mol Biol 92:30–39. https://doi.org/10.1016/j.ibmb.2017.11.007. (PMID: 10.1016/j.ibmb.2017.11.00729154832)
Ferizli AG, Beris G (2005) Mortality and F1 progeny of the lesser grain borer, Rhyzopertha Dominica (F), on wheat treated with diatomaceous earth: effects of rate, exposure period and relative humidity. Pest Manag Sci 61:1103–1109. https://doi.org/10.1002/ps.1094. (PMID: 10.1002/ps.109416041696)
Fernández E, Grávalos C, Haro PJ, Cifuentes D, Bielza P (2009) Insecticide resistance status of Bemisia tabaci Q-biotype in South-Eastern Spain. Pest Manag Sci 65(8):885–891. https://doi.org/10.1002/ps.1769. (PMID: 10.1002/ps.176919418483)
Fónagy A (2006) Insect neuropeptides and their potential application for pest control. Acta Phytopathol Entomol Hung 41:137–152. https://doi.org/10.1556/APhyt.41.2006.1-2.13. (PMID: 10.1556/APhyt.41.2006.1-2.13)
Fotouhi K, Fazel MM, Kavousi A (2015) Effects of pyriproxyfen on bioenergetic resources of Leptinotarsa decemlineata (say) (Coleoptera: Chrysomelidae). Turkish J Entomol 39(1):11–22. https://doi.org/10.16970/ted.14717. (PMID: 10.16970/ted.14717)
Fu KY, Zhu TT, Guo WC, Ahmat T, Li GQ (2016) Knockdown of a putative insulin-like peptide gene LdILP2 in Leptinotarsa decemlineata by RNA interference impairs pupation and adult emergence. Gene 581(2):170–177. https://doi.org/10.1016/j.gene.2016.01.037. (PMID: 10.1016/j.gene.2016.01.03726812356)
Geo A, Pathak H, Kujur AE, Sudhakar SR, Kannan NN (2019) Short neuropeptide F regulates the starvation 1 mediated enhanced locomotor activity in drosophila. BioRxiv 764688. https://doi.org/10.1101/764688.
Gereszek LJ, Coats JR, Beitz DC (2008) Effects of dietary conjugated linoleic acid on European corn borer (Lepidoptera: Crambidae) survival, fatty acid profile, and fecundity. Ann Entomol Soc Am 101(2):430–438. https://doi.org/10.1603/0013-8746(2008)101[430:EODCLA]2.0.CO;2. (PMID: 10.1603/0013-8746(2008)101[430:EODCLA]2.0.CO;2)
Ghasemi A, Sendi J, Ghadamyari M (2010) Physiological and biochemical effect of pyriproxyfen on Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Journal of Plant Protection Research 50(4):416–422. https://doi.org/10.2478/v10045-010-0070-9. (PMID: 10.2478/v10045-010-0070-9)
Goldsworthy GJ, Opoku-Ware K, Mullen LM (2005) Adipokinetic hormone and the immune responses of locusts to infection. Ann N Y Acad Sci 1040:106–113. https://doi.org/10.1196/annals.1327.013. (PMID: 10.1196/annals.1327.01315891013)
Golob P (1997) Current status and future perspectives for inert dusts for control of stored product insects. J Stored Prod Res 33:69–79. https://doi.org/10.1016/S0022-474X(96)00031-8. (PMID: 10.1016/S0022-474X(96)00031-8)
Gong Y, Shi X, Desneux N, Gao X (2016) Effects of spirotetramat treatments on fecundity and carboxylesterase expression of Aphis gossypii glover. Ecotoxicology 25(4):655–663. https://doi.org/10.1007/s10646-016-1624-z. (PMID: 10.1007/s10646-016-1624-z26898726)
Güney G, Toprak U, Hegedus DD, Bayram Ş, Coutu C, Bekkaoui D, Baldwin D, Heckel DG, Hänniger S, Cedden D, Amutkan Mutlu D, Suludere Z (2021) A look into Colorado potato beetle lipid metabolism through the lens of lipid storage droplet proteins. Insect Biochem Mol Biol 133:103473. https://doi.org/10.1016/j.ibmb.2020.103473. (PMID: 10.1016/j.ibmb.2020.10347333010403)
Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Farese RV (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–661. https://doi.org/10.1038/nature06928. (PMID: 10.1038/nature06928184087092734507)
Guo XR, Zheng SC, Liu L, Feng QL (2009) The sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCPx) is involved in cholesterol uptake in the midgut of Spodoptera litura: gene cloning, expression, localization and functional analyses. BMC Mol Biol 10:102–120. https://doi.org/10.1186/1471-2199-10-102. (PMID: 10.1186/1471-2199-10-102199126242779813)
Herren JK, Paredes JC, Schüpfer F, Arafah K, Bulet P, Lemaitre B (2014) Insect endosymbiont proliferation is limited by lipid availability. eLife 3:e02964. https://doi.org/10.7554/eLife.02964. (PMID: 10.7554/eLife.02964250274394123717)
Hopkinson JE, Pumpa SM (2019) Baseline susceptibility of Bemisia tabaci MEAM 1 (Hemiptera: aleyrodidae) in Australia to spirotetramat, cyantraniliprole and dinotefuran, with reference to pyriproxyfen cross-resistance. Austral Entomol 58(4):762–771. https://doi.org/10.1111/aen.12390. (PMID: 10.1111/aen.12390)
Hou QL, Chen EH, Jiang HB, Wei DD, Gui SH, Wang JJ, Smagghe G (2017) Adipokinetic hormone receptor gene identification and its role in triacylglycerol mobilization and sexual behavior in the oriental fruit fly (Bactrocera dorsalis). Insect Biochem Mol Biol 90:1–13. https://doi.org/10.1016/j.ibmb.2017.09.006. (PMID: 10.1016/j.ibmb.2017.09.00628919559)
Hu J, Wang C, Wang J, You Y, Chen F (2010) Monitoring of resistance to spirodiclofen and five other acaricides in Panonychus citri collected from Chinese citrus orchards. Pest Manag Sci 66(9):1025–1030. https://doi.org/10.1002/ps.1978. (PMID: 10.1002/ps.197820540074)
Ibrahim E, Hejníková M, Shaik H, Doležel D, Kodrík D (2017) Adipokinetic hormone activities in insect body infected by entomopathogenic nematode. J Insect Physiol 98:347–355. https://doi.org/10.1016/j.jinsphys.2017.02.009. (PMID: 10.1016/j.jinsphys.2017.02.00928254268)
Ilias A, Roditakis E, Grispou M, Nauen R, Vontas J, Tsagkarakou A (2012) Efficacy of ketoenols on insecticide resistant field populations of two-spotted spider mite Tetranychus urticae and sweet potato whitefly Bemisia tabaci from Greece. Crop Prot 42:305–311. https://doi.org/10.1002/ps.1978. (PMID: 10.1002/ps.1978)
İnak E, Alpkent YN, Çobanoğlu S, Dermauw W, Van Leeuwen T (2019) Resistance incidence and presence of resistance mutations in populations of Tetranychus urticae from vegetable crops in Turkey. Exp Appl Acarol 78(3):343–360. https://doi.org/10.1007/s10493-019-00398-w. (PMID: 10.1007/s10493-019-00398-w31250237)
İnak E, Alpkent YN, Çobanoğlu S, Toprak U, Van Leeuwen T (2022) Incidence of spiromesifen resistance and resistance mechanisms in Tetranychus urticae populations collected from strawberry production areas in Turkey. Crop Prot 160:106049. https://doi.org/10.1016/j.cropro.2022.106049. (PMID: 10.1016/j.cropro.2022.106049)
İnak E, Demirci B, Vandenhole M, Söylemezoğlu G, Van Leeuwen T, Toprak U (2023) Molecular mechanisms of resistance to spirodiclofen and spiromesifen in Tetranychus urticae. Crop Prot 172:106343. https://doi.org/10.1016/j.cropro.2023.106343. (PMID: 10.1016/j.cropro.2023.106343)
Jackson C, Liu J-W, Carr P, Younus F, Coppin C, Meirelles T, Lethier M, Pandey G, Ollis DL, Russell RJ, Weik M, Oakeshott J (2013) Structure and function of an insect α-carboxylesterase (αEsterase7) associated with insecticide resistance. Proc Natl Acad Sci USA 110(25):10177–10182. https://doi.org/10.1073/pnas.1304097110. (PMID: 10.1073/pnas.1304097110237339413690851)
Jeschke P, Fischer R, Nauen R (2019) Inhibitors of lipid synthesis: acetyl-CoA carboxylase inhibitors. In: Jeschke P, Witschel M, Krämer W, Schirmer U (eds) Modern crop protection compounds. Wiley, Ed, pp 1202–1222. (PMID: 10.1002/9783527699261)
Ji Y, Zheng H, Zhang C, Tan X, He C, Fu B, Du T, Liang J, Wei X, Gong P, Liu S, Yang J, Huang M, Yin C, Xue H, Hu J, Du H, Xie W, Yang X, Zhang Y (2023) Dynamic monitoring of the insecticide resistance status of Bemisia tabaci across China from 2019–2021. Pest Manag Sci 80:341–354. https://doi.org/10.1002/ps.7763. (PMID: 10.1002/ps.776337688583)
Jiang H, Zhang N, Ji C, Meng X, Qian K, Zheng Y, Wang J (2020) Metabolic and transcriptome responses of RNAi-mediated AMPKα knockdown in Tribolium castaneum. BMC Genomics 21(1):1–13. https://doi.org/10.1186/s12864-020-07070-3. (PMID: 10.1186/s12864-020-07070-3)
Jones C, Haji K, Khatib B, Bagi J, Mcha J, Devine GJ, Daley M, Kabula B, Ali AS, Majambere S, Ranson H (2013) The dynamics of pyrethroid resistance in anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis. Parasites Vectors 6:343. https://doi.org/10.1186/1756-3305-6-343. (PMID: 10.1186/1756-3305-6-343243140053895773)
Kapantaidaki DE, Sadikoglou E, Tsakireli D, Kampanis V, Stavrakaki M, Schorn C, Ilias A, Riga M, Tsiamis G, Nauen R, Skavdis G, Vontas J, Tsagkarakou A (2018) Insecticide resistance in Trialeurodes vaporariorum populations and novel diagnostics for kdr mutations. Pest Manag Sci 74(1):59–69. https://doi.org/10.1002/ps.4674. (PMID: 10.1002/ps.467428734106)
Karatolos N, Williamson MS, Denholm I, Gorman K, Ffrench-Constant R, Nauen R (2012) Resistance to spiromesifen in Trialeurodes vaporariorum is associated with a single amino acid replacement in its target enzyme acetyl-coenzyme a carboxylase. Insect Mol Biol 21(3):327–334. https://doi.org/10.1111/j.1365-2583.2012.01136.x. (PMID: 10.1111/j.1365-2583.2012.01136.x22458881)
Keyhani NO (2018) Lipid biology in fungal stress and virulence: Entomopathogenic fungi. Fungal Biol 122(6):420–429. https://doi.org/10.1016/j.funbio.2017.07.003. (PMID: 10.1016/j.funbio.2017.07.00329801785)
Khajehali J, Van Nieuwenhuyse P, Demaeght P, Tirry L, Van Leeuwen T (2011) Acaricide resistance and resistance mechanisms in Tetranychus urticae populations from rose greenhouses in The Netherlands. Pest Manag Sci 67(11):1424–1433. https://doi.org/10.1002/ps.2191. (PMID: 10.1002/ps.219121548003)
Kim Y, Stanley D (2021) Eicosanoid signaling in insect immunology: new genes and unresolved issues. Genes (Basel) 12(2):211. https://doi.org/10.3390/genes12020211. (PMID: 10.3390/genes1202021133535438)
King-Jones K, Horner M, Lam G, Thummel C (2006) The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metab 4(1):37–48. https://doi.org/10.1016/j.cmet.2006.06.006. (PMID: 10.1016/j.cmet.2006.06.00616814731)
Kissoum N, Soltani N (2016) Spiromesifen, an insecticide inhibitor of lipid synthesis, affects the amounts of carbohydrates, glycogen and the activity of lactate dehydrogenase in Drosophila melanogaster. J Entomol Zool Stud 4(1):452–456.
Kissoum N, Bensafi-Gheraibia H, Hamida ZC, Soltani N (2020) Evaluation of the pesticide Oberon on a model organism Drosophila melanogaster via topical toxicity test on biochemical and reproductive parameters. Comp Biochem Physiol, Part C: Toxicol Pharmacol 228:108666. https://doi.org/10.1016/j.cbpc.2019.108666. (PMID: 10.1016/j.cbpc.2019.108666)
Kliot A, Ghanim M (2012) Fitness costs associated with insecticide resistance. Pest Manag Sci 68(11):1431–1437. https://doi.org/10.1002/ps.3395. (PMID: 10.1002/ps.339522945853)
Kodrík D, Plavšin I, Velki M, Stašková T (2015) Enhancement of insecticide efficacy by adipokinetic hormones. In: Montgomery J (ed) Insecticides: occurrence, global threats and ecological impact. Nova Science Publishers, Inc., pp 77–91.
Kontsedalov S, Gottlieb Y, Ishaaya I, Nauen R, Horowitz R, Ghanim M (2009) Toxicity of spiromesifen to the developmental stages of Bemisia tabaci biotype B. Pest Manag Sci 65(1):5–13. https://doi.org/10.1002/ps.1636. (PMID: 10.1002/ps.163618785225)
Konuma T, Morooka N, Nagasawa H, Nagata S (2012) Knockdown of the adipokinetic hormone receptor increases feeding frequency in the two-spotted cricket Gryllus bimaculatus. Endocrinology 153(7):3111–3122. https://doi.org/10.1210/en.2011-1533. (PMID: 10.1210/en.2011-153322619358)
Korunić Z (1998) Diatomaceous earths, a group of natural insecticides. J Stored Prod Res 34:87e97. https://doi.org/10.1016/S0022-474X(97)00039-8. (PMID: 10.1016/S0022-474X(97)00039-8)
Kramer T, Nauen R (2011) Monitoring of spirodiclofen susceptibility in field populations of European red mites, Panonychus ulmi (Koch)(Acari: Tetranychidae), and the cross-resistance pattern of a laboratory-selected strain. Pest Manag Sci 67(10):1285–1293. https://doi.org/10.1002/ps.2184. (PMID: 10.1002/ps.218421520486)
Kubrak O, Lushchak O, Zandawala M, Nässel DR (2016) Systemic corazonin signalling modulates stress responses and metabolism in drosophila. Open Biol 6(11):160152. https://doi.org/10.1098/rsob.160152. (PMID: 10.1098/rsob.160152278109695133436)
Lee K, Kwon O, Lee JH, Kwon K, Min K, Jung S, Yu K (2008) Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat Cell Biol 10:468–475. https://doi.org/10.1038/ncb1710. (PMID: 10.1038/ncb171018344986)
Lee SH, Kim YH, Kwon DH, Cha DJ, Kim JH (2015) Mutation and duplication of arthropod acetylcholinesterase: implications for pesticide resistance and tolerance. Pestic Biochem Physiol 120:118–124. https://doi.org/10.1016/j.pestbp.2014.11.004. (PMID: 10.1016/j.pestbp.2014.11.00425987229)
Leyria J, Orchard I, Lange AB (2021) The involvement of insulin/ToR signaling pathway in reproductive performance of Rhodnius prolixus. Insect Biochem Mol Biol 130:103526. https://doi.org/10.1016/j.ibmb.2021.103526. (PMID: 10.1016/j.ibmb.2021.10352633453353)
Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253. https://doi.org/10.1146/annurev.ento.51.110104.151104. (PMID: 10.1146/annurev.ento.51.110104.15110416925478)
Li F, Hu J, Tian J, Xu K, Ni M, Wang B, Shen W, Li B (2016) Effects of phoxim on nutrient metabolism and insulin signaling pathway in silkworm midgut. Chemosphere 146:478–485. https://doi.org/10.1016/j.chemosphere.2015.12.032. (PMID: 10.1016/j.chemosphere.2015.12.03226741554)
Li YN, Ren XB, Liu ZC, Ye B, Zhao ZJ, Fan Q, Liu YB, Zhang JN, Li WL (2021) Insulin-like peptide and foxO mediate the trehalose catabolism enhancement during the diapause termination period in the Chinese oak silkworm (Antheraea pernyi). Insect 12(9):784. https://doi.org/10.3390/insects12090784. (PMID: 10.3390/insects12090784)
Linda PC, Kim YS, Tong L (2010) Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme a carboxylase by pinoxaden. Proc Natl Acad Sci USA 107(51):22072–22077. https://doi.org/10.1073/pnas.1012039107. (PMID: 10.1073/pnas.1012039107)
Liu L, Dai R, Yang H, Jin D (2016) Sublethal effects of triazophos on the life table parameters of Sogatella furcifera (Hemiptera: Delphacidae). Fla Entomol 99:292–296. https://doi.org/10.1653/024.099.0221. (PMID: 10.1653/024.099.0221)
Lopes KVG, Silva LB, Reis AP, Oliveira MGA, Guedes RNC (2010) Modified α-amylase activity among insecticide-resistant and-susceptible strains of the maize weevil, Sitophilus zeamais. J Insect Physiol 56(9):1050–1057. https://doi.org/10.1016/j.jinsphys.2010.02.020. (PMID: 10.1016/j.jinsphys.2010.02.02020223242)
Lu K, Chen X, Li Y, Li W, Zhou Q (2018a) Lipophorin receptor regulates Nilaparvata lugens fecundity by promoting lipid accumulation and vitellogenin biosynthesis. Comp Biochem Physiol A Mol Integr Physiol 219:28–37. https://doi.org/10.1016/j.cbpa.2018.02.008. (PMID: 10.1016/j.cbpa.2018.02.00829476823)
Lu K, Zhou J, Chen X, Li W, Li Y, Cheng Y, Yan J, You K, Yuan Z, Zhou Q (2018b) Deficiency of Brummer impaires lipid mobilization and JH-mediated vitellogenesis in the brown planthopper, Nilaparvata lugens. Front Phys 9:1535. https://doi.org/10.3389/fphys.2018.01535. (PMID: 10.3389/fphys.2018.01535)
Lueke B, Douris V, Hopkinson JE, Maiwald F, Hertlein G, Papapostolou KM, Bielza P, Tsagkarakou A, Van Leeuwen T, Bass C, Vontas J, Nauen R (2020) Identification and functional characterization of a novel acetyl-CoA carboxylase mutation associated with ketoenol resistance in Bemisia tabaci. Pestic Biochem Physiol 104583. https://doi.org/10.1016/j.pestbp.2020.104583.
Lümmen P, Khajehali J, Luther K, Van Leeuwen T (2014) The cyclic keto-enol insecticide spirotetramat inhibits insect and spider mite acetyl-CoA carboxylases by interfering with the carboxyltransferase partial reaction. Insect Biochem Mol Biol 55:1–8. https://doi.org/10.1016/j.ibmb.2014.09.010. (PMID: 10.1016/j.ibmb.2014.09.01025281882)
Majerowicz D, Gondim KC (2013) Insect lipid metabolism: insights into gene expression regulation. In: Mandal SS (ed) Recent trends in gene expression. Nova Science Publishers, Arlington, pp 147–190.
Mann RS, Schuster DJ, Cordero R, Toapanta M (2012) Baseline toxicity of spiromesifen to biotype B of Bemisia tabaci in Florida. Fla Entomol 95(1):95–98. https://doi.org/10.1653/024.095.0115. (PMID: 10.1653/024.095.0115)
Marčić D, Perić P, Petronijević S, Prijović M, Drobnjaković T (2011) Cyclic ketoenols-acaricides and insecticides with a novel mode of action. Pestic Phytomed 26:185–195. https://doi.org/10.2298/PIF1103185M. (PMID: 10.2298/PIF1103185M)
Marčić D, Petronijevic S, Drobnjakovic T, Prijovic M, Peric P, Milenkovic S (2012) The effects of spirotetramat on life history traits and population growth of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 56(2):113–122. https://doi.org/10.1007/s10493-011-9500-2. (PMID: 10.1007/s10493-011-9500-222042022)
Marnett LJ (1999) Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res-Fund Mol Mech Mutagen 424(1–2):83–95. https://doi.org/10.1016/S0027-5107(99)00010-X. (PMID: 10.1016/S0027-5107(99)00010-X)
Martinez J, Patkaniowska A, Urlaub H, Lührmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110(5):563–574. https://doi.org/10.1016/S0092-8674(02)00908-X. (PMID: 10.1016/S0092-8674(02)00908-X12230974)
Mehlhorn S, Hunnekuhl VS, Geibel S, Nauen R, Bucher G (2021) Establishing RNAi for basic research and pest control and identification of the most efficient target genes for pest control: a brief guide. Front Zool 18:1–16. https://doi.org/10.1186/s12983-021-00444-7. (PMID: 10.1186/s12983-021-00444-7)
Mirhaghparast S, Zibaee A, Sendi J, Hoda H, Fazeli-Dinan M (2015) Immune and metabolic responses of Chilo suppressalis Walker (Lepidoptera: Crambidae) larvae to an insect growth regulator, hexaflumuron. Pestic Biochem Physiol 125:69–77. https://doi.org/10.1016/j.pestbp.2015.05.007. (PMID: 10.1016/j.pestbp.2015.05.00726615153)
Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, Renshaw M (2015) Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J 14(1):173. https://doi.org/10.1186/s12936-015-0693-4. (PMID: 10.1186/s12936-015-0693-4258993974423491)
Mortazavi H, Toprak U, Emekci M, Bağcı F, Ferizli AG (2020) Persistence of diatomaceous earth, SilicoSec® against three stored grain beetles. J Stored Prod Res 89:101724. https://doi.org/10.1016/j.jspr.2020.101724. (PMID: 10.1016/j.jspr.2020.101724)
Muehlebach M, Buchholz A, Zambach W, Schaetzer J, Daniels M, Hueter O, Kloer DP, Lind R, Maienfisch P, Pierce A, Pitterna T, Smejkal T, Stafford D, Wildsmith L (2020) Spiro N-methoxy piperidine ring containing aryldiones for thecontrol of sucking insects and mites: discovery of spiropidion. Pest Manag Sci 76(10):3440–3450. https://doi.org/10.1002/ps.5743. (PMID: 10.1002/ps.574331943711)
Mullen L, Goldsworthy G (2006) Immune responses of locusts to challenge with the pathogenic fungus Metarhizium or high doses of laminarin. J Insect Physiol 52(4):389–398. https://doi.org/10.1016/j.jinsphys.2005.10.008. (PMID: 10.1016/j.jinsphys.2005.10.00816413931)
Müller V, Maiwald F, Haack LC, Köhler H, Nauen R (2024) Mapping and characterization of target-site resistance to cyclic ketoenol insecticides in cabbage whiteflies, Aleyrodes proletella (Hemiptera: Aleyrodidae). Insects 15:178.
Musselman LP, Fink J, Maier E, Gatto J, Brent M, Baranski T (2018) Seven-up is a novel regulator of insülin signaling. Genetics 208(4):1643–1656. https://doi.org/10.1534/genetics.118.300770. (PMID: 10.1534/genetics.118.300770294871375887154)
Nauen R (2005) Spirodiclofen: mode of action and resistance risk assessment in Tetranychid Pest mites. J Pestic Sci 30:272–274. https://doi.org/10.1584/jpestics.30.272. (PMID: 10.1584/jpestics.30.272)
Nauen R, Bretschneider T, Elbert A, Fischer R, Tieman R (2003) Spirodiclofen and spiromesifen. Pestic Outlook 14(6):243–246. (PMID: 10.1039/b314855f)
Nauen R, Reckmann U, Thomzik J, Thielert W (2008) Biological profile of spirotetramat (Movento®)–a new two-way systemic (ambimobile) insecticide against sucking pest species. Bayer CropSci J 61(2):245–278.
Ohnishi A, Hashimoto K, Imai K, Matsumoto S (2009) Functional characterization of the Bombyx mori fatty acid transport protein (BmFATP) within the silkmoth pheromone gland. J Biol Chem 284(8):5128–5136. https://doi.org/10.1074/jbc.M806072200. (PMID: 10.1074/jbc.M80607220019112106)
Olademehin OP, Liu C, Rimal B, Adegboyega NF, Chen F, Sim C, Kim SJ (2020) Dsi-RNA knockdown of genes regulated by foxo reduces glycogen and lipid accumulations in diapausing Culex pipiens. Sci Rep 10(1):1–13. https://doi.org/10.1038/s41598-020-74292-6. (PMID: 10.1038/s41598-020-74292-6)
Ouyang Y, Montez GH, Liu L, Grafton-Cardwell EE (2012) Spirodiclofen and spirotetramat bioassays for monitoring resistance in citrus red mite, Panonychus citri (Acari: Tetranychidae). Pest Manag Sci 68(5):781–787. https://doi.org/10.1002/ps.2326. (PMID: 10.1002/ps.232622102515)
Ovčarenko I, Lindström L, Saikkonen K, Vänninen I (2014) Variation in mortality among populations is higher for pymetrozine than for imidacloprid and spiromesifen in Trialeurodes vaporariorum in greenhouses in Finland. Pest Manag Sci 70(10):1524–1530. https://doi.org/10.1002/ps.3766. (PMID: 10.1002/ps.376624757031)
Pan Y, Yang C, Gao X, Peng T, Bi R, Xi J, Xin X, Zhu E, Wu Y, Shang Q (2015) Spirotetramat resistance adaption analysis of Aphis gossypii glover by transcriptomic survey. Pestic Biochem Physiol 124:73–80. https://doi.org/10.1016/j.pestbp.2015.04.007. (PMID: 10.1016/j.pestbp.2015.04.00726453233)
Pan Y, Zhu E, Gao X, Nauen R, Xi J, Peng T, Wei X, Zheng C, Shang Q (2017) Novel mutations and expression changes of acetyl-coenzyme a carboxylase are associated with spirotetramat resistance in Aphis gossypii glover. Insect Mol Biol 26(4):383–391. https://doi.org/10.1111/imb.12300. (PMID: 10.1111/imb.1230028370744)
Pan Y, Chai P, Zheng C, Xu H, Wu Y, Gao X, Xi J, Shang Q (2018) Contribution of cytochrome P450 monooxygenase CYP380C6 to spirotetramat resistance in Aphis gossypii glover. Pestic Biochem Physiol 148:182–189. https://doi.org/10.1016/j.pestbp.2018.04.015. (PMID: 10.1016/j.pestbp.2018.04.01529891371)
Pan Y, Wen S, Chen X, Gao X, Zeng X, Liu X, Tian F, Shang Q (2020) UDP-glycosyltransferases contribute to spirotetramat resistance in Aphis gossypii glover. Pestic Biochem Physiol 104565. https://doi.org/10.1016/j.pestbp.2020.104565.
Pang R, Chen M, Liang Z, Yue X, Ge H, Zhang W (2016) Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens. Sci Rep 6:34992. https://doi.org/10.1038/srep34992. (PMID: 10.1038/srep34992277214435056347)
Pang R, Qiu J, Li T, Yang P, Yue L, Pan Y, Zhang W (2017) The regulation of lipid metabolism by a hypothetical P-loop NTPase and its impact on fecundity of the brown planthopper. Biochim Biophys Acta Gen Subj 1861(7):1750–1758. https://doi.org/10.1016/j.bbagen.2017.03.011. (PMID: 10.1016/j.bbagen.2017.03.01128315769)
Papapostolou KM, Riga M, Charamis J, Skoufa E, Souchlas V, Ilias A, Dermauw W, Ioannidis P, Van Leeuwen T, Vontas J (2021) Identification and characterization of striking multiple-insecticide resistance in a Tetranychus urticae field population from Greece. Pest Manag Sci 77(2):666–676. https://doi.org/10.1002/ps.6136. (PMID: 10.1002/ps.613633051974)
Parvy JP, Napal L, Rubin T, Poidevin M, Perrin L, Wicker-Thomas C, Montagne J (2012) Drosophila melanogaster acetyl-CoA-carboxylase sustains a fatty acid–dependent remote signal to waterproof the respiratory system. PLoS Genet 8(8):e1002925. https://doi.org/10.1371/journal.pgen.1002925. (PMID: 10.1371/journal.pgen.1002925229569163431307)
Patnaik BB, Patnaik HH, Park KB, Jo YH, Lee YS, Han YS (2015) Silencing of apolipophorin-III causes abnormal adult morphological phenotype and susceptibility to L isteria monocytogenes infection in Tenebrio molitor. Entomol Res 45(2):116–121. https://doi.org/10.1111/1748-5967.12099. (PMID: 10.1111/1748-5967.12099)
Pei XJ, Chen N, Bai Y, Qiao JW, Li S, Fan YL, Liu TX (2019) BgFas1: a fatty acid synthase gene required for both hydrocarbon and cuticular fatty acid biosynthesis in the German cockroach, Blattella germanica (L.). Insect Biochem Mol Biol 112:103203. https://doi.org/10.1016/j.ibmb.2019.103203. (PMID: 10.1016/j.ibmb.2019.10320331425851)
Pei XJ, Fan YL, Bai Y, Bai TT, Schal C, Zhang ZF, Chen N, Li S, Liu TX (2021) Modulation of fatty acid elongation in cockroaches sustains sexually dimorphic hydrocarbons and female attractiveness. PLoS Biol 19(7):e3001330. https://doi.org/10.1371/journal.pbio.3001330. (PMID: 10.1371/journal.pbio.3001330343144148315507)
Pei XJ, Bai TT, Zhang ZF, Chen N, Li S, Fan YL, Liu TX (2022) Two putative fatty acid synthetic genes of BgFas3 and BgElo1 are responsible for respiratory waterproofing in Blattella germanica. Insect Sci 29(1):33–50. https://doi.org/10.1111/1744-7917.12900. (PMID: 10.1111/1744-7917.1290033543834)
Peng T, Pan Y, Yang C, Gao X, Xi J, Wu Y, Huang X, Zhu E, Xin X, Zhan C, Shang Q (2016) Over-expression of CYP6A2 is associated with spirotetramat resistance and cross-resistance in the resistant strain of Aphis gossypii glover. Pestic Biochem Physiol 126:64–69. https://doi.org/10.1016/j.pestbp.2015.07.008. (PMID: 10.1016/j.pestbp.2015.07.00826778436)
Peng Z, Zheng H, Xie W, Wang S, Wu Q, Zhang Y (2017) Field resistance monitoring of the immature stages of the whitefly Bemisia tabaci to spirotetramat in China. Crop Prot 98:243–247. https://doi.org/10.1016/j.cropro.2017.04.009. (PMID: 10.1016/j.cropro.2017.04.009)
Plavšin I, Stašková T, Šerý M, Smýkal V, Hackenberger B, Kodrík D (2015) Hormonal enhancement of insecticide efficacy in Tribolium castaneum: oxidative stress and metabolic aspects. Comp Biochem Physiol, Part C: Toxicol Pharmacol 170:19–27. https://doi.org/10.1016/j.cbpc.2015.01.005. (PMID: 10.1016/j.cbpc.2015.01.005)
Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Schulze A (2008) SREBP activity is regulated by mTORC1 and contributes to AKT-dependent cell growth. Cell Metab 8(3):224–236. https://doi.org/10.1016/j.cmet.2008.07.007. (PMID: 10.1016/j.cmet.2008.07.007187620232593919)
Pospisilik J, Schramek D, Schnidar H, Cronin S, Nehme N, Zhang X, Knauf C, Cani PD, Aumayr K, Todoric J, Bayer M, Haschemi A, Puviindran V, Tar K, Orthofer M, Neely GG, Dietzl G, Manoukian A, Funovics M, Prager G, Wagner O, Ferrandon D, Aberger F, Hui CC, Esterbauer H, Penninger J (2010) Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140(1):148–160. https://doi.org/10.1016/j.cell.2009.12.027. (PMID: 10.1016/j.cell.2009.12.02720074523)
Prabhaker N, Castle SJ, Buckelew L, Toscano NC (2008) Baseline susceptibility of Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) populations from California and Arizona to spiromesifen. J Econ Entomol 101(1):174–181. https://doi.org/10.1603/EC13429. (PMID: 10.1603/EC1342918330133)
Prabhaker N, Castle S, Perring TM (2014) Baseline susceptibility of Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) populations from California and Arizona to spirotetramat. J Econ Entomol 107(2):773–780. https://doi.org/10.1603/EC13429. (PMID: 10.1603/EC1342924772560)
Prasantha BDR, Reichmuth C, Adler C, Felgentreu D (2015) Lipid adsorption of diatomaceous earths and increased water permeability in the epicuticle layer of the cowpea weevil Callosobruchus maculatus (F.) and the bean weevil Acanthoscelides obtectus (say) (Chrysomelidae). J Stored Prod Res 64:36–41. https://doi.org/10.1016/j.jspr.2015.08.003. (PMID: 10.1016/j.jspr.2015.08.003)
Qiao JW, Fan YL, Wu BJ, Wang D, Liu TX (2020) Involvement of apolipoprotein D in desiccation tolerance and adult fecundity of Acyrthosiphon pisum. J Insect Physiol 127:104160. https://doi.org/10.1016/j.jinsphys.2020.104160. (PMID: 10.1016/j.jinsphys.2020.10416033137328)
Qiao JW, Fan YL, Bai TT, Wu BJ, Pei XJ, Wang D, Liu TX (2021) Lipophorin receptor regulates the cuticular hydrocarbon accumulation and adult fecundity of the pea aphid Acyrthosiphon pisum. Insect Sci 28(4):1018–1032. https://doi.org/10.1111/1744-7917.12828. (PMID: 10.1111/1744-7917.1282832558147)
Rajapakse S, Qu D, Ahmed AS, Rickers-Haunerland J, Haunerland NH (2019) Effects of FABP knockdown on flight performance of the desert locust, Schistocerca gregaria. J Exp Biol 222(21):jeb203455. https://doi.org/10.1242/jeb.203455. (PMID: 10.1242/jeb.20345531597730)
Rauch N, Nauen R (2002) Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pestic Biochem Physiol 74(2):91–101. https://doi.org/10.1016/S0048-3575(02)00150-5. (PMID: 10.1016/S0048-3575(02)00150-5)
Roy S, Hansen I, Raikhel A (2007) Effect of insulin and 20-hydroxyecdysone in the fat body of the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 37(12):1317–1326. https://doi.org/10.1016/j.ibmb.2007.08.004. (PMID: 10.1016/j.ibmb.2007.08.004179673502104489)
Roy D, Bhattacharjee T, Biswas A, Ghosh A, Sarkar S, Mondal D, Sarkar PK (2019) Resistance monitoring for conventional and new chemistry insecticides on Bemisia tabaci genetic group Asia-I in major vegetable crops from India. Phytoparasitica 47(1):55–66. https://doi.org/10.1007/s12600-018-00707-w. (PMID: 10.1007/s12600-018-00707-w)
Sabra SG, Abbas N, Hafez AM (2023) First monitoring of resistance and corresponding mechanisms in the green peach aphid, Myzus persicae (Sulzer), to registered and unregistered insecticides in Saudi Arabia. Pestic Biochem Physiol 105504. https://doi.org/10.1016/j.pestbp.2023.105504.
Sadekuzzaman M, Gautam N, Kim Y (2017) A novel calcium-independent phospholipase A2 and its physiological roles in development and immunity of a lepidopteran insect, Spodoptera exigua. Dev Comp Immunol 77:210–220. https://doi.org/10.1016/j.dci.2017.08.014. (PMID: 10.1016/j.dci.2017.08.01428851514)
Santos-Araujo S, Bomfim L, Araripe LO, Bruno R, Ramos I, Gondim KC (2020) Silencing of ATG6 and ATG8 promotes increased levels of triacylglycerol (TAG) in the fat body during prolonged starvation periods in the Chagas disease vector Rhodnius prolixus. Insect Biochem Mol Biol 127:103484. https://doi.org/10.1016/j.ibmb.2020.103484. (PMID: 10.1016/j.ibmb.2020.10348433022370)
Sato ME, Veronez B, Stocco RS, Queiroz MCV, Gallego R (2016) Spiromesifen resistance in Tetranychus urticae (Acari: Tetranychidae): selection, stability, and monitoring. Crop Prot 89:278–283. https://doi.org/10.1016/j.cropro.2016.08.003. (PMID: 10.1016/j.cropro.2016.08.003)
Schlipalius D, Tuck A, Jagadeesan R, Nguyen T, Kaur R, Subramanian S, Barrero R, Nayak M, Ebert P (2018) Variant linkage analysis using de novo transcriptome sequencing identifies a conserved phosphine resistance gene in insects. Genetics 209(1):281–290. https://doi.org/10.1534/genetics.118.300688. (PMID: 10.1534/genetics.118.300688294967475937174)
Shi JF, Xu QY, Sun QK, Meng QW, Mu LL, Guo WC, Li GQ (2016) Physiological roles of trehalose in Leptinotarsa larvae revealed by RNA interference of trehalose-6-phosphate synthase and trehalase genes. Insect Biochem Mol Biol 77:52–68. https://doi.org/10.1016/j.ibmb.2016.07.012. (PMID: 10.1016/j.ibmb.2016.07.01227524277)
Silva CT, Wanderley-Teixeira V, Cunha FM, Oliveira JV, Dutra Kde A, Navarro DM, Teixeira ÁA (2016) Biochemical parameters of Spodoptera frugiperda (JE smith) treated with citronella oil (Cymbopogon winterianus Jowitt ex Bor) and its influence on reproduction. Acta Histochem 118(4):347–352. https://doi.org/10.1016/j.acthis.2016.03.004. (PMID: 10.1016/j.acthis.2016.03.00427012436)
Silva-Oliveira G, De Paula IF, Medina JM, Alves-Bezerra M, Gondim KC (2021) Insulin receptor deficiency reduces lipid synthesis and reproductive function in the insect Rhodnius prolixus. Biochim Biophy Acta (BBA) Mol Cell Biol Lipids 1866(2):158851. https://doi.org/10.1016/j.bbalip.2020.158851. (PMID: 10.1016/j.bbalip.2020.158851)
Sim C, Denlinger D (2009) Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens. Physiol Genomics 39(3):202–209. https://doi.org/10.1152/physiolgenomics.00095.2009. (PMID: 10.1152/physiolgenomics.00095.2009197066912789672)
Singh KS, Cordeiro EM, Troczka BJ, Pym A, Mackisack J, Mathers TC, Duarte A, Legeai F, Robin S, Bielza P, Burrack HJ, Charaabi K, Denholm I, Figueroa CC, Ffrench-Constant RH, Jander G, Margaritopoulos JT, Mazzoni E, Nauen R, Ramírez CC, Ren G, Stepanyan I, Umina PA, Voronova NV, Vontas J, Williamson MS, Wilson ACC, Xi-Wu G, Youn YN, Zimmer CT, Simon JC, Hayward A, Bass C (2021) Global patterns in genomic diversity underpinning the evolution of insecticide resistance in the aphid crop pest Myzus persicae. Commun Biol 4(1):1–16. https://doi.org/10.1038/s42003-021-02373-x. (PMID: 10.1038/s42003-021-02373-x)
Song Y, Gu F, Liu Z, Li Z, Wu F, Sheng S (2022) The key role of fatty acid synthase in lipid metabolism and metamorphic development in a destructive insect pest, Spodoptera litura (Lepidoptera: Noctuidae). Int J Mol Sci 23(16):9064. https://doi.org/10.3390/ijms23169064. (PMID: 10.3390/ijms23169064360123299409488)
Souto AL, Sylvestre M, Tölke ED, Tavares JF, Barbosa-Filho JM, Cebrián-Torrejón G (2021) Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: prospects, applications and challenges. Molecules 26(16):4835. https://doi.org/10.3390/molecules26164835. (PMID: 10.3390/molecules26164835344434218400533)
Sparks TC, Crossthwaite AJ, Nauen R, Banba S, Cordova D, Earley F, Ebbinghaus-Kintscher U, Fujioka S, Hirao A, Karmon D, Kennedy R, Nakao T, Popham HJR, Salgado V, Watson GB, Wedel BJ, Wessels FJ (2020) Insecticides, biologics and nematicides: updates to IRAC’s mode of action classification-a tool for resistance management. Pestic Biochem Physiol 104587. https://doi.org/10.1016/j.pestbp.2020.104587.
Stanley D (2006) Prostaglandins and other eicosanoids in insects: biological significance. Annu Rev Entomol 51:25–44. https://doi.org/10.1146/annurev.ento.51.110104.151021. (PMID: 10.1146/annurev.ento.51.110104.15102116332202)
Stavrakaki M, Tsagkarakou A, Vontas J, Roditakis E (2023) A multi-year monitoring survey on insecticide resistance for cotton whitefly Bemisia tabaci. Entomol Gen 43(3):567–574. https://doi.org/10.1127/entomologia/2023/2134. (PMID: 10.1127/entomologia/2023/2134)
Subramanyam B, Roesli R (2000) Inert dusts. In: Subramanyam B, Hagstrum DW (eds) Alternatives to pesticides in stored-product IPM. Kluwer Academic Publishers, Dordrecht, p 321e380. (PMID: 10.1007/978-1-4615-4353-4)
Tan QQ, Liu W, Zhu F, Lei CL, Wang XP (2017) Fatty acid synthase 2 contributes to diapause preparation in a beetle by regulating lipid accumulation and stress tolerance genes expression. Sci Rep 7(1):1–11, 40509. https://doi.org/10.1038/srep40509. (PMID: 10.1038/srep40509)
Tirello P, Pozzebon A, Cassanelli S, Van Leeuwen T, Duso C (2012) Resistance to acaricides in Italian strains of Tetranychus urticae: toxicological and enzymatic assays. Exp Appl Acarol 57(1):53–64. https://doi.org/10.1007/s10493-012-9536-y. (PMID: 10.1007/s10493-012-9536-y22447041)
Toé K, N’Falé S, Dabiré R, Ranson H, Jones C (2015) The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics 16(1):146. https://doi.org/10.1186/s12864-015-1342-6. (PMID: 10.1186/s12864-015-1342-6257664124352231)
Tong L (2013) Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 70(5):863–891. https://doi.org/10.1007/s00018-012-1096-0. (PMID: 10.1007/s00018-012-1096-022869039)
Tong L, Harwood HJ Jr (2006) Acetyl-coenzyme a carboxylases: versatile targets for drug discovery. J Cell Biochem 99(6):1476–1488. https://doi.org/10.1002/jcb.21077. (PMID: 10.1002/jcb.2107716983687)
Toprak U (2020) The role of peptide hormones in insect lipid metabolism. Front Physiol 11:434. https://doi.org/10.3389/fphys.2020.00434. (PMID: 10.3389/fphys.2020.00434324576517221030)
Toprak U, Bayram Ş, Gürkan MO (2005) Gross pathology of SpliNPVs and alterations in Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) morphology due to baculoviral infection. J Agr Sci 11:65–71. https://doi.org/10.1501/Tarimbil_0000000495. (PMID: 10.1501/Tarimbil_0000000495)
Toprak U, Bayram Ş, Gürkan MO (2006) Comparative biological activities of a plaque-purified variant and a Turkish native isolate of SpliNPV-B against Spodoptera littoralis (Lepidoptera: Noctuidae). Pest Manag Sci 62:57–63. https://doi.org/10.1002/ps.1128. (PMID: 10.1002/ps.112816235266)
Toprak U, Baldwin D, Erlandson M, Gillott C, Harris S, Hegedus D (2013) In vitro and in vivo application of RNA interference for targeting genes involved in peritrophic matrix synthesis in a lepidopteran system. Insect Sci 20(1):92–100. https://doi.org/10.1111/j.1744-7917.2012.01562.x. (PMID: 10.1111/j.1744-7917.2012.01562.x23955829)
Toprak U, Coutu C, Baldwin D, Erlandson M, Hegedus D (2014a) Development of an improved RNA interference vector system for agrobacterium-mediated plant transformation. Turk J Biol 38:40–47. https://doi.org/10.3906/biy-1304-4. (PMID: 10.3906/biy-1304-4)
Toprak U, Guz N, Gurkan MO, Hegedus DD (2014b) Identification and coordinated expression of perilipin genes in the biological cycle of sunn pest, Eurygaster maura (Hemiptera: Scutelleridae): implications for lipolysis and lipogenesis. Comp Biochem Physiol B Mol Biol 171:1–11. https://doi.org/10.1016/j.cbpb.2014.02.001. (PMID: 10.1016/j.cbpb.2014.02.001)
Toprak U, Hegedus D, Doğan C, Güney G (2020) A journey into the world of insect lipid metabolism. Arch Insect Biochem Physiol e21682. https://doi.org/10.1002/arch.21682.
Umina PA, Bass C, van Rooyen A, Chirgwin E, Arthur AL, Pym A, Mackisack J, Mathews A, Kirkland L, Kirkland L (2022) Spirotetramat resistance in Myzus persicae (Sulzer)(Hemiptera: Aphididae) and its association with the presence of the A2666V mutation. Pest Manag Sci 78(11):4822–4831. https://doi.org/10.1002/ps.7103. (PMID: 10.1002/ps.7103359007719804573)
Van Leeuwen T, Dermauw W (2016) The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annu Rev Entomol 61:475–498. https://doi.org/10.1146/annurev-ento-010715-023907. (PMID: 10.1146/annurev-ento-010715-02390726982444)
Van Leeuwen T, Tirry L, Yamamoto A, Nauen R, Dermauw W (2015) The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic Biochem Physiol 121:12–21. https://doi.org/10.1016/j.pestbp.2014.12.009. (PMID: 10.1016/j.pestbp.2014.12.00926047107)
Veenstra JA, Leyria J, Orchard I, Lange AB (2021) Identification of gonadulin and insulin-like growth factor from migratory locusts and their importance in reproduction in Locusta migratoria. Front Endocrinol 12:675. https://doi.org/10.3389/fendo.2021.693068. (PMID: 10.3389/fendo.2021.693068)
Wakil SJ, Titchener EB, Gibson DM (1958) Evidence for the participation of biotin in the enzymic synthesis of fatty acids. Biochim Biophys Acta 29(1):225–226. https://doi.org/10.1016/0006-3002(58)90177-x. (PMID: 10.1016/0006-3002(58)90177-x13560478)
Wakil SJ, Stoops JK, Joshi VC (1983) Fatty acid synthesis and its regulation. Annu Rev Biochem 52(1):537–579. (PMID: 10.1146/annurev.bi.52.070183.0025416137188)
Wang W, Wan P, Lai F, Zhu T, Fu Q (2018) Double-stranded RNA targeting calmodulin reveals a potential target for pest management of Nilaparvata lugens. Pest Manag Sci 74(7):1711–1719. https://doi.org/10.1002/ps.4865. (PMID: 10.1002/ps.486529381254)
Wang W, Ma Y, Yang RR, Cheng X, Huang HJ, Zhang CX, Bao YY (2021) An MD-2-related lipid-recognition protein is required for insect reproduction and integument development. Open Biol 11(12):210170. https://doi.org/10.1098/rsob.210170. (PMID: 10.1098/rsob.210170349056998670961)
Wei X, Zheng C, Peng T, Pan Y, Xi J, Chen X, Zhang J, Yang S, Gao X, Shang Q (2016) miR-276 and miR-3016-modulated expression of acetyl-CoA carboxylase accounts for spirotetramat resistance in Aphis gossypii glover. Insect Biochem Mol Biol 79:57–65. https://doi.org/10.1016/j.ibmb.2016.10.011. (PMID: 10.1016/j.ibmb.2016.10.011)
Wei P, Demaeght P, De Schutter K, Grigoraki L, Labropoulou V, Riga M, Vontas J, Nauen R, Dermauw W, Van Leeuwen T (2020) Overexpression of an alternative allele of carboxyl/choline esterase 4 (CCE04) of Tetranychus urticae is associated with high levels of resistance to the keto-enol acaricide spirodiclofen. Pest Manag Sci 76(3):1142–1153. https://doi.org/10.1002/ps.5627. (PMID: 10.1002/ps.562731583806)
Wrońska AK, Kaczmarek A, Boguś MI, Kuna A (2023) Lipids as a key element of insect defense systems. Front Genet 14:1183659. https://doi.org/10.3389/fgene.2023.1183659. (PMID: 10.3389/fgene.2023.11836593735937710289264)
Wybouw N, Kosterlitz O, Kurlovs AH, Bajda S, Greenhalgh R, Snoeck S, Bui H, Bryon A, Dermauw W, Van Leeuwen T, Clark RM (2019) Long-term population studies uncover the genome structure and genetic basis of xenobiotic and host plant adaptation in the herbivore Tetranychus urticae. Genetics 211(4):1409–1427. https://doi.org/10.1534/genetics.118.301803. (PMID: 10.1534/genetics.118.301803307454396456322)
Xi J, Pan Y, Wei Z, Yang C, Gao X, Peng T, Bi R, Liu Y, Xin X, Shang Q (2015) Proteomics-based identification and analysis proteins associated with spirotetramat tolerance in Aphis gossypii glover. Pestic Biochem Physiol 119:74–80. https://doi.org/10.1016/j.pestbp.2015.02.002. (PMID: 10.1016/j.pestbp.2015.02.00225868820)
Xiang M, Zhang HZ, Jing XY, Wang MQ, Mao JJ, Li YY, Zang LS, Zhang LS (2021) Sequencing, expression, and functional analyses of four genes related to fatty acid biosynthesis during the diapause process in the female ladybird, Coccinella septempunctata L. Front Phys 12:706032. https://doi.org/10.3389/fphys.2021.706032. (PMID: 10.3389/fphys.2021.706032)
Xu QY, Deng P, Mu LL, Fu KY, Guo WC, Li GQ (2019a) Silencing Taiman impairs larval development in Leptinotarsa decemlineata. Pestic Biochem Physiol 160:30–39. https://doi.org/10.1016/j.pestbp.2019.06.013. (PMID: 10.1016/j.pestbp.2019.06.01331519255)
Xu Y, Borcherding AF, Heier C, Tian G, Roeder T, Kühnlein RP (2019b) Chronic dysfunction of stromal interaction molecule by pulsed RNAi induction in fat tissue impairs organismal energy homeostasis in drosophila. Sci Rep 9(1):1–15. https://doi.org/10.1038/s41598-019-43327-y. (PMID: 10.1038/s41598-019-43327-y)
Xu J, Sun Z, Hao M, Lv M, Xu H (2020) Evaluation of biological activities, and exploration on mechanism of action of matrine-cholesterol derivatives. Bioorg Chem 94:103439. https://doi.org/10.1016/j.bioorg.2019.103439. (PMID: 10.1016/j.bioorg.2019.10343931776033)
Xu H, Zhang K, Lv M, Hao M (2021) Construction of cholesterol oxime ether derivatives containing isoxazoline/isoxazole fragments and their agricultural bioactive properties/control efficiency. J Agric Food Chem 69(29):8098–8109. https://doi.org/10.1021/acs.jafc.1c01884. (PMID: 10.1021/acs.jafc.1c0188434278787)
Yan WH, Wu MY, Shah S, Yao YC, Elgizawy KK, Tang N, Wu G, Yang FL (2021) Silencing the triacylglycerol lipase (TGL) gene decreases the number of apyrene sperm and inhibits oviposition in Sitotroga cerealella. Cell Mol Life Sci 79(1):44. https://doi.org/10.1007/s00018-021-04048-6. (PMID: 10.1007/s00018-021-04048-63497142411072562)
Yan J, Nauen R, Reitz S, Alyokhin A, Zhang J, Mota-Sanchez D, Kim Y, Palli SR, Rondon SI, Nault BA, Jurat-Fuentes JL, Crossley MS, Snyder WE, Gatehouse AMR, Zalucki MP, Tabashnik BE, Gao Y (2024) The new kid on the block in insect pest management: sprayable RNAi goes commercial. Sci China Life Sci 67(8):1766–1768. https://doi.org/10.1007/s11427-024-2612-1.
Yang J, Flaven-Pouchon J, Yang Y, Gehring N, Moussian B (2023a) The greenhouse and field insecticide Spirotetramat differentially affects the surface barrier efficiency in non-target Drosophila melanogaster. Entomol Gen 43(2):433–440. https://doi.org/10.1127/entomologia/2022/1732. (PMID: 10.1127/entomologia/2022/1732)
Yang J, Flaven-Pouchon J, Wang Y, Moussian B (2023b) Spirotetramat reduces fitness of the spotted-wing drosophila. Insect Sci, Drosophila suzukii. https://doi.org/10.1111/1744-7917.13283. (PMID: 10.1111/1744-7917.13283)
Ye W, Zeng J, Hu W, Bustos-Segura C, Noman A, Lou Y (2020) The desaturase gene Nlug-desata2 regulates the performance of the brown planthopper Nilaparvata lugens and its relationship with rice. Int J Mol Sci 21(11):4143. https://doi.org/10.3390/ijms21114143. (PMID: 10.3390/ijms21114143325320017312190)
Yu SJ, Tian H, Yang JS, Ding L, Chen F, Li X, Yue J, Liu H, Ran C (2015) Cloning of acetyl CoA carboxylase cDNA and the effects of spirodiclofen on the expression of acetyl CoA carboxylase mRNA in Panonychus citri. Entomol Exp Appl 156(1):52–58. https://doi.org/10.1111/eea.12314. (PMID: 10.1111/eea.12314)
Yükselbaba U, Ali IH (2022) Insecticide resistance status of Bemisia tabaci (Genn., 1889) (Hemiptera: Aleyrodidae) populations to cyantraniliprole, pyriproxyfen and spirotetramat in Antalya (Türkiye). Turkish. J Entomol 46(3):263–274. https://doi.org/10.16970/entoted.1112553. (PMID: 10.16970/entoted.1112553)
Zhang Q, Nachman RJ, Kaczmarek K, Zabrocki J, Denlinger DL (2011) Disruption of insect diapause using agonists and an antagonist of diapause hormone. Proc Natl Acad Sci USA 108(41):16922–16926. https://doi.org/10.1073/pnas.1113863108. (PMID: 10.1073/pnas.1113863108219404973193214)
Zhang Q, Nachman R, Denlinger D (2015a) Diapause hormone in the Helicoverpa/Heliothis complex: a review of gene expression, peptide structure and activity, analog and antagonist development, and the receptor. Peptides 72:196–201. https://doi.org/10.1016/j.peptides.2015.05.005. (PMID: 10.1016/j.peptides.2015.05.00526032331)
Zhang YX, Ge LQ, Jiang YP, Lu XL, Li X, Stanley D, Song QS, Wu JC (2015b) RNAi knockdown of acetyl-CoA carboxylase gene eliminates jinggangmycin-enhanced reproduction and population growth in the brown planthopper, Nilaparvata lugens. Sci Rep 5:15360. https://doi.org/10.1038/srep15360. (PMID: 10.1038/srep15360264821934611885)
Zhou J, Chen X, Yan J, You K, Yuan Z, Zhou Q, Lu K (2018) Brummer-dependent lipid mobilization regulates starvation resistance in Nilaparvata lugens. Arch Insect Biochem Physiol 99(2):e21481. https://doi.org/10.1002/arch.21481. (PMID: 10.1002/arch.2148129956367)
Zhou Y, Wu Y-m, Fan R, Ouyang J, Zhou X-l, Li Z-b, Janjua MU, Li H-g, Bao M-h, He B-s (2023) Transcriptome analysis unveils the mechanisms of lipid metabolism response to grayanotoxin I stress in Spodoptera litura. Peer Journal 11:e16238. https://doi.org/10.7717/peerj.16238. (PMID: 10.7717/peerj.16238)
Zhu KY, Palli SR (2020) Mechanisms, applications, and challenges of insect RNA interference. Annu Rev Entomol 65(1):293–311. https://doi.org/10.1146/annurev-ento-011019-025224. (PMID: 10.1146/annurev-ento-011019-02522431610134)
Zibaee A, Zibaee I, Jalali Sendi J (2011) A juvenile hormone analog, pyriproxifen, affects some biochemical components in the haemolymph and fat bodies of Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Pestic Biochem Physiol 100(3):289–298. https://doi.org/10.1016/j.pestbp.2011.05.002. (PMID: 10.1016/j.pestbp.2011.05.002)
Contributed Indexing:
Keywords: Fat body; Lipid metabolism; Pest management
Substance Nomenclature:
0 (Insecticides)
Entry Date(s):
Date Created: 20260119 Date Completed: 20260119 Latest Revision: 20260119
Update Code:
20260130
DOI:
10.1007/978-3-032-04842-4_822
PMID:
41553675
Database:
MEDLINE

*Further Information*

*Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
(© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.)*