*Result*: Fast personalized CT dose calculations with GPUMCD.

Title:
Fast personalized CT dose calculations with GPUMCD.
Authors:
Lefol RO; Département de physique, de génie physique et d'optique, Université Laval, Québec, Canada., Lemaréchal Y; Département de physique, de génie physique et d'optique, Université Laval, Québec, Canada., Sagona A; Département de physique, de génie physique et d'optique, Université Laval, Québec, Canada., Boivin J; Service de radio-oncologie et Centre de recherche CHU de Québec-Université Laval, Québec, Canada., Joubert P; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Canada., Després P; Département de physique, de génie physique et d'optique, Université Laval, Québec, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Canada; Service de radio-oncologie et Centre de recherche CHU de Québec-Université Laval, Québec, Canada. Electronic address: philippe.despres@phy.ulaval.ca.
Source:
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) [Phys Med] 2026 Jan; Vol. 141, pp. 105693. Date of Electronic Publication: 2025 Dec 20.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Istituti Editoriali e Poligrafici Internazionali Country of Publication: Italy NLM ID: 9302888 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1724-191X (Electronic) Linking ISSN: 11201797 NLM ISO Abbreviation: Phys Med Subsets: MEDLINE
Imprint Name(s):
Publication: Pisa : Istituti Editoriali e Poligrafici Internazionali
Original Publication: Lugano, Switzerland : Giardini editori S.A.,
Contributed Indexing:
Keywords: Automatic segmentation; CT; GPU; Monte Carlo; Organ dose; Personalized dosimetry
Entry Date(s):
Date Created: 20251221 Date Completed: 20260116 Latest Revision: 20260116
Update Code:
20260130
DOI:
10.1016/j.ejmp.2025.105693
PMID:
41422770
Database:
MEDLINE

*Further Information*

*Purpose: The continuous increase of population dose due to ever-rising Computed Tomography (CT) examinations has called for more personalized dose estimations in medical imaging - a far from trivial task. This study aims to demonstrate a GPU-enabled pipeline combining automatic segmentation with GPU Monte Carlo Dose (GPUMCD) simulations to provide patient-specific dose-to-organ CT dosimetry reports using existing patient CT images.
Methods: A dynamic representation of the CT imaging process was reproduced within GPUMCD using information in DICOM headers, complemented by in-house exposure measurements, and validated in homogeneous and anthropomorphic phantoms. A dose pipeline was implemented using GPUMCD and a pre-trained open-source nnU-net model (TotalSegmentator). Dose-to-organ dosimetry was obtained for images from a lung cancer screening program and stored in DICOM-compliant Structured Reports.
Results: GPUMCD calculated dose values were within 5.5% of measurements for all phantoms and investigated conditions. Utilizing one A100-SXM4-40GB GPU, the average pipeline runtime was 6 min and 06 s per CT study. The GPU-driven simulation and segmentation operation took 46% (2 min and 7 s) of the total runtime, and data processing (file reading, conversion, and writing) occupied the remaining 54%.
Conclusion: This work demonstrates the ability to generate patient-specific three-dimensional dose distributions in CT within a few seconds and the subsequent feasibility of performing fully automated mass personalized dose-to-organ calculations. The pipeline ingests and produces DICOM-compliant data compatible with clinical and research environments, enabling routine imaging dosimetry and large-scale retroactive dosimetry studies.
(Copyright © 2025 Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd. All rights reserved.)*

*Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.*