*Result*: microRNA modulates aphid phototaxis in response to yellow sticky traps.
Kim KN, Huang QY and Lei CL, Advances in insect phototaxis and application to pest management: a review. Pest Manag Sci 75:3135–3143 (2019).
Owens AC, Pocock MJ and Seymoure BM, Current evidence in support of insect‐friendly lighting practices. Curr Opin Insect Sci 66:101276 (2024).
Yang H, Hu G, Zhang G, Chen X, Zhu Z, Liu S et al., Effect of light colours and weather conditions on captures of Sogatella furcifera (Horvath) and Nilaparvata lugens (Stal). J Appl Entomol 138:743–753 (2014).
Egri A, Meszaros A, Kriska G and Fail J, Dichromacy in the brown marmorated stink bug? Spectral sensitivity of the compound eyes and phototaxis of Halyomorpha halys. J Pest Sci 97:657–666 (2024).
Sun Y, Tian A, Zhang X, Zhao Z, Zhang Z and Ma R, Phototaxis of Grapholitha molesta (Lepidoptera: Olethreutidae) to different light sources. J Econ Entomol 107:1792–1799 (2014).
Yun CN, Maeng IS, Yang SH, Hwang UJ, Kim KN, Kim KC et al., Evaluating the phototactic behavior responses of the diamondback moth, Plutella xylostella, to some different wavelength LED lights in laboratory and field. J Asia Pac Entomol 26:102080 (2023).
Shimoda M and Honda K, Insect reactions to light and its applications to pest management. Appl Entomol Zool 48:413–421 (2013).
Stukenberg N, Gebauer K and Poehling H, Light emitting diode(LED)‐based trapping of the greenhouse whitefly (Trialeurodes vaporariorum). J Appl Entomol 139:268–279 (2015).
Wang Y, Chang Y, Zhang S, Jiang X, Yang B and Wang G, Comparison of phototactic behavior between two migratory pests, Helicoverpa armigera and Spodoptera frugiperda. Insects 13:917 (2022).
Yang H, Lu J, Zhu P, Sun Y, Hu Z, Li D et al., Blue light attracts more Spodoptera frugiperda moths and promotes their flight speed. Insects 15:129 (2024).
Chu C, Simmons A, Chen TY, Alexander P and Henneberry T, Lime green light‐emitting diode equipped yellow sticky card traps for monitoring whiteflies, aphids and fungus gnats in greenhouses. Entomol Sin 11:125–133 (2010).
Wakakuwa M, Stewart F, Matsumoto Y, Matsunaga S and Arikawa K, Physiological basis of phototaxis to near‐infrared light in Nephotettix cincticeps. J Comp Physiol A‐Neuroethol Sens Neural Behav Physiol 200:527–536 (2014).
Meng QW, Xu QY, Zhu TT, Jin L, Fu KY, Guo WC et al., Hormonal signaling cascades required for phototaxis switch in wandering Leptinotarsa decemlineata larvae. PLoS Genet 15:e1007423 (2019).
Li CF, Tian FJ, Lin T, Wang ZB, Liu JL and Zeng XN, The expression and function of opsin genes related to the phototactic behavior of Asian citrus psyllid. Pest Manag Sci 76:1578–1587 (2020).
Paris TM, Allan SA, Udell BJ and Stansly PA, Wavelength and polarization afect phototaxis of the Asian citrus psyllid. Insects 8:88 (2017).
Huang M, Meng JY, Zhou L, Yu C and Zhang CY, Expression and function of opsin genes associated with phototaxis in Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae). Pest Manag Sci 79:4490–4500 (2023).
Zhang BZ, Jiang YT, Cui LL, Hu GL, Li XA, Zhang P et al., microRNA‐3037 targeting CYP6CY2 confers imidacloprid resistance to Sitobion miscanthi (Takahashi). Pestic Biochem Physiol 202:105958 (2024).
Chen W and Li Z, miR‐571 manipulating termite immune response to fungus and showing potential for green management of Copotermes formosanus (Blattodea: Isoptera). Pestic Biochem Physiol 208:106274 (2025).
Zhang ZL, Wang XJ, Lu JB, Lu HB, Ye ZX, Xu ZT et al., Cross‐kingdom RNA interference mediated by insect salivary microRNAs may suppress plant immunity. Proc Natl Acad Sci U S A 121:e2318783121 (2024).
Döring T and Chittka L, Visual ecology of aphids‐a critical review on the role of colours in host finding. Arthropod‐Plant Interact 1:3–16 (2007).
Schroeder M, Glinwood R, Ignell R and Kruger K, The role of visual and olfactory plant cues in aphid behaviour and the development of non‐persistent virus management strategies. Arthropod‐Plant Inte 11:1–13 (2017).
Doering TF and Kirchner SM, A model for colour preference behaviour of spring migrant aphids. Proc Roy Soc B‐Biol Sci 377:20210283 (2022).
Dieckhoff C and Meyhöfer R, If only you could catch me—catch me if you can: monitoring aphids in protected cucumber cultivations by means of sticky traps. Horticulturae 9:571 (2023).
Xu L, Jiang HB, Yu JL, Pan D, Tao Y, Lei Q et al., Two odorant receptors regulate 1‐octen‐3‐ol induced oviposition behavior in the oriental fruit fly. Commun Biol 6:176 (2023).
Ana K and Sam GJ, miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73 (2014).
Friedländer MR, Mackowiak SD, Li N, Chen W and Rajewsky N, miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52 (2012).
Love MI, Huber W and Anders S, Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol 15:550 (2014).
Enright AJ, John B, Gaul U, Tuschl T, Sander C and Marks DS, MicroRNA targets in drosophila. Genome Biol 5:R1 (2003).
Rehmsmeier M, Steffen P, Höchsmann M and Giegerich R, Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517 (2004).
Lewis BP, Shih I, Jones‐Rhoades MW, Bartel DP and Burge CB, Prediction of mammalian microRNA targets. Cell 115:787–798 (2003).
Lewis B, Burge C and Bartel D, Conserved seed pairing, often flanked by adenosines, indicates that yhousands of human genes are microRNA targets. Cell 120:15–20 (2005).
Shang F, Niu J, Ding BY, Zhang W, Wei DD, Wei D et al., The miR‐9b microRNA mediates dimorphism and development of wing in aphids. Proc Natl Acad Sci U S A 117:8404–8409 (2020).
Zotos P, Roubelakis M, Anagnou N and Kossida S, Overview of microRNA target analysis tools. Curr Bioinform 7:310–323 (2012).
Kim D, Paggi JM, Park C, Bennett C and Salzberg SL, Graph‐based genome alignment and genotyping with HISAT2 and HISAT‐genotype. Nat Biotechnol 37:907–915 (2019).
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT and Salzberg SL, StringTie enables improved reconstruction of a transcriptome from RNA‐seq reads. Nat Biotechnol 33:290–295 (2015).
He K, Xiao H, Sun Y, Ding S, Situ G and Li F, Transgenic microRNA‐14 rice shows high resistance to rice stem borer. Plant Biotechnol J 17:461–471 (2019).
Kang ZW, Liu FH, Tian HG, Zhang M, Guo SS and Liu TX, Evaluation of the reference genes for expression analysis using quantitative real‐time polymerase chain reaction in the green peach aphid, Myzus persicae. Insect Sci 24:222–234 (2017).
Hellemans J, Mortier G, De Paepe A, Speleman F and Vandesompele J, qBase relative quantification framework and software for management and automated analysis of real‐time quantitative PCR data. Genome Biol 8:R19 (2007).
Wang ZG, Qin CY, Chen Y, Yu XY, Chen RY, Niu J et al., Fusion dsRNA designs incorporating multiple target sequences can enhance the aphid control capacity of an RNAi‐based strategy. Pest Manag Sci 80:2689–2697 (2024).
Döring T and Röhrig K, Behavioural response of winged aphids to visual contrasts in the field. Ann Appl Biol 168:421–434 (2016).
Jasrotia P, Yadav J, Singh B, Patil S, Kumar S and Singh G, Efficiency of sticky traps for monitoring aphids in wheat under North‐Western Plains and peninsular zones of India. J Environ Biol 43:794–800 (2022).
Zhang YH, Qian X, Zong X, An SH, Yan S and Shen J, Dual‐role regulator of a novel miR‐3040 in photoperiod‐mediated wing dimorphism and wing development in green peach aphid. Insect Sci 32:80–94 (2025).
Niu Y, Liu Z, Nian X, Xu X and Zhang Y, miR‐210 controls the evening phase of circadian locomotor rhythms through repression of Fasciclin 2. PLoS Genet 15:e1007655 (2019).
He L, Yang C, Meng J, Tang X and Zhang C, miRNA targeting Mpp53 is involved in UV‐B irradiation resistance in Myzus persicae. Insect Sci (2024). https://doi.org/10.1111/1744-7917.13472.
Matsuura H, Sokabe T, Kohno K, Tominaga M and Kadowaki T, Evolutionary conservation and changes in insect TRP channels. BMC Evol Biol 9:228 (2009).
Himmel N and Cox D, Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature: TRP channels: evolution and function. Proc Roy Soc B‐Biol Sci 287:20201309 (2020).
Yang Y, Guo W, Wang M and Zhang D, Genome‐wide chacterization and gene expression analysis of TRP channel superfamily genes in the migratory locust, Locusta migratoria. Genes 14:1427 (2023).
Wang LX, Niu CD, Wu SF and Gao CF, Molecular characterizations and expression profiles of transient receptor potential channels in the brown planthopper, Nilaparvata lugens. Pestic Biochem Physiol 173:104780 (2021).
Hardie RC and Minke B, The trp gene is essential for a light‐activated Ca2+ channel in drosophila photoreceptors. Neuron 8:643–651 (1992).
Rosenzweig M, Kang KJ and Garrity PA, Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proc Natl Acad Sci U S A 105:14668–14673 (2008).
Niemeyer BA, Suzuki E, Scott K, Jalink K and Zuker CS, The drosophila light‐activated conductance is composed of the two channels TRP and TRPL. Cell 85:651–659 (1996).
Chen SP, Chu XM, Chi MX, Zhao J and Qiu RZ, Transcriptomic characterization of phototransduction genes of the Asian citrus psyllid Diaphorina citri Kuwayama. Insects 15:996 (2024).
Yang L, Huang T, Shen J, Wang B and Wang G, The TRPA1 channel regulates temperature preference in the green peach aphid Myzus persicae. J Integr Agric 24:3546–3558 (2025). https://doi.org/10.1016/j.jia.2025.02.046.
Liénard MA, Baez‐Nieto D, Tsai CC, Valencia‐Montoya WA, Werin B, Johanson U et al., TRPA5 encodes a thermosensitive ankyrin ion channel receptor in a triatomine insect. iScience 27:109541 (2024).
Huang Z, Sun Z, Liu J, Ju X, Xia H, Yang Y et al., Insect transient receptor potential vanilloid channels as potential targets of insecticides. Dev Comp Immunol 148:104899 (2023).
Fu GX, Li WZ, Wu SY, Yuan GH, Wang YH, An JJ et al., Bioassays on phototactic responses of Myzus persicae (Homoptera:Aphididae) to different monochromatic lights. Acta Entomol Sin 52:1171–1176 (2009).
Zhang Y, Wang XX, Jing X, Tian HG and Liu TX, Winged pea aphids can modify phototaxis in different development stages to assist their host distribution. Front Physiol 7:307 (2016).
Gadenne C, Groh C, Gruebel K, Joschinski J, Krauss J, Krieger J et al., Neuroanatomical correlates of mobility: sensory brain centres are bigger in winged than in wingless parthenogenetic pea aphid females. Arthropod Struct Dev 52:100883 (2019).
Ishikawa A and Miura T, Morphological differences between wing morphs of two macrosiphini aphid species, Acyrtbosipbon pisum and Megoura crassicauda (Hemiptera, Aphididae). Sociobiology 50:881–893 (2007).
Du Z, Zhang T, Wu F, Liang Z, Liu X, Jacob M et al., The structure of the compound eyes and phototaxis in two phenotypes of the bean pest Callosobruchus maculatus (Coleoptera: Bruchinae). Zool Syst 48:193–205 (2023).
Chen Y, Luo CW, Kuang RP, Li HW, Chen Z and Liu YJ, Phototactic behavior of the Armand pine bark weevil, Pissodes punctatus. J Insect Sci 13:3 (2013).
Luo CW and Chen Y, Phototactic behavior of scleroderma guani (hymenoptera: Bethylidae)‐parasitoid of Pissodes punctatus (Coleoptera: Curculionidae). J Insect Behav 29:605–614 (2016).
Yanez Diaz MJ, Rodriguez M, Musleh S, Silva G and Lucas E, Photo‐selective nets (PSNs) affect predation by Harmonia axyridis on Myzus persicae. Biol Control 164:104780 (2021).
Ong SQ and Høye TT, Trap colour strongly affects the ability of deep learning models to recognize insect species in images of sticky traps. Pest Manag Sci 81:654–666 (2025).
0 (Insect Proteins)
*Further Information*
*Background: Colored sticky traps are widely used for aphid population monitoring and control based on phototaxis. However, the underlying molecular mechanisms remain unclear.
Results: Here, we explored microRNA (miRNA) regulation of phototaxis in the peach aphid (Myzus persicae), a major agricultural pest worldwide. Behavioral assays revealed that M. persicae consistently preferred yellow when tested using color cards of specific wavelengths under varying heights and time conditions. Small RNA sequencing identified significant downregulation of miR-13c in aphids attracted to yellow cards. Functional validation confirmed that miR-13c overexpression reduced this yellow preference in M. persicae. By combining RNA sequencing, target prediction algorithms, dual-luciferase reporter, and RNA pull-down assays, we demonstrated that miR-13c directly targets the transient receptor potential protein (MpTRP). MpTRP silencing triggered phototaxis impairment similar to that caused by miR-13c overexpression, both of which reduced yellow preference in M. persicae.
Conclusion: These findings establish the miR-13c-MpTRP axis as a key molecular mechanism regulating aphid phototaxis, providing evidence of miRNA-mediated light-seeking behavior in insects. The study proposes a foundational framework for developing RNA interference-based biocontrol strategies targeting miRNA-photoreception interactions, offering a sustainable alternative to chemical pesticides. © 2025 Society of Chemical Industry.
(© 2025 Society of Chemical Industry.)*