*Result*: The effect of inter-letter spacing on the N170 during visual word recognition: An event-related potentials experiment.

Title:
The effect of inter-letter spacing on the N170 during visual word recognition: An event-related potentials experiment.
Authors:
Civera T; ERI-Lectura, Universitat de València, Av. Blasco Ibáñez, 21, 46010, Valencia, Spain. Teresa.Civera@uv.es., Perea M; ERI-Lectura, Universitat de València, Av. Blasco Ibáñez, 21, 46010, Valencia, Spain., Leone-Fernandez B; ERI-Lectura, Universitat de València, Av. Blasco Ibáñez, 21, 46010, Valencia, Spain., Vergara-Martínez M; ERI-Lectura, Universitat de València, Av. Blasco Ibáñez, 21, 46010, Valencia, Spain.
Source:
Cognitive, affective & behavioral neuroscience [Cogn Affect Behav Neurosci] 2024 Dec; Vol. 24 (6), pp. 1096-1108. Date of Electronic Publication: 2024 Sep 23.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Springer Country of Publication: United States NLM ID: 101083946 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1531-135X (Electronic) Linking ISSN: 15307026 NLM ISO Abbreviation: Cogn Affect Behav Neurosci Subsets: MEDLINE
Imprint Name(s):
Publication: 2011- : New York : Springer
Original Publication: Austin, TX : Psychonomic Society, c2001-
Comments:
Erratum in: Cogn Affect Behav Neurosci. 2024 Dec;24(6):1202. doi: 10.3758/s13415-024-01233-5.. (PMID: 39354290)
References:
Aparicio, X., Midgley, K. J., Holcomb, P. J., Pu, H., Lavaur, J. M., & Grainger, J. (2012). Language effects in trilinguals: An ERP study. Frontiers in Psychology, 3, 402. https://doi.org/10.3389/fpsyg.2012.00402. (PMID: 10.3389/fpsyg.2012.00402231334283490278)
Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8(6), 551–565. https://doi.org/10.1162/jocn.1996.8.6.551. (PMID: 10.1162/jocn.1996.8.6.551207400652927138)
Bentin, S., Mouchetant-Rostaing, Y., Giard, M. H., Echallier, J. F., & Pernier, J. (1999). ERP manifestations of processing printed words at different psycholinguistic levels: Time course and scalp distribution. Journal of Cognitive Neuroscience, 11(3), 235–260. https://doi.org/10.1162/089892999563373. (PMID: 10.1162/08989299956337310402254)
Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226(5241), 177–178. https://doi.org/10.1038/226177a0. (PMID: 10.1038/226177a05437004)
Brem, S., Bucher, K., Halder, P., Summers, P., Dietrich, T., Martin, E., & Brandeis, D. (2006). Evidence for developmental changes in the visual word processing network beyond adolescence. NeuroImage, 29(3), 822–837. https://doi.org/10.1016/j.neuroimage.2005.09.023. (PMID: 10.1016/j.neuroimage.2005.09.02316257546)
Chanceaux, M., & Grainger, J. (2012). Serial position effects in the identification of letters, digits, symbols, and shapes in peripheral vision. Acta Psychologica, 141(2), 149–158. https://doi.org/10.1016/j.actpsy.2012.08.001. (PMID: 10.1016/j.actpsy.2012.08.00122964055)
Chauncey, K., Holcomb, P. J., & Grainger, J. (2008). Effects of stimulus font and size on masked repetition priming: An event-related potentials (ERP) investigation. Language and Cognitive Processes, 23(1), 183–200. https://doi.org/10.1080/01690960701579839. (PMID: 10.1080/01690960701579839195907542707185)
Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: The case for the visual word form area. Neuroimage, 22(1), 466–476. https://doi.org/10.1016/j.neuroimage.2003.12.049. (PMID: 10.1016/j.neuroimage.2003.12.04915110040)
Cohen, L., Dehaene, S., Vinckier, F., Jobert, A., & Montavont, A. (2008). Reading normal and degraded words: Contribution of the dorsal and ventral visual pathways. NeuroImage, 40(1), 353–366. https://doi.org/10.1016/j.neuroimage.2007.11.036. (PMID: 10.1016/j.neuroimage.2007.11.03618182174)
Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 117(3), 713–758. https://doi.org/10.1037/a0019738. (PMID: 10.1037/a001973820658851)
Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. Trends in Cognitive Sciences, 9(7), 335–341. https://doi.org/10.1016/j.tics.2005.05.004. (PMID: 10.1016/j.tics.2005.05.00415951224)
Dell’Acqua, R., & Grainger, J. (1999). Unconscious semantic priming from pictures. Cognition, 73(1), B1–B15. https://doi.org/10.1016/s0010-0277(99)00049-9. (PMID: 10.1016/s0010-0277(99)00049-910536225)
Duchon, A., Perea, M., Sebastián-Gallés, N., Martí, A., & Carreiras, M. (2013). EsPal: One-stop shopping for Spanish word properties. Behavior Research Methods, 45(4), 1246–1258. https://doi.org/10.3758/s13428-013-0326-1. (PMID: 10.3758/s13428-013-0326-123468181)
Duñabeitia, J. A., Molinaro, N., Laka, I., Estévez, A., & Carreiras, M. (2009). N250 effects for letter transpositions depend on lexicality: “Casual” or “causal”? NeuroReport, 20(4), 381–387. https://doi.org/10.1097/wnr.0b013e3283249b1c. (PMID: 10.1097/wnr.0b013e3283249b1c19248245)
Eddy, M. D., Grainger, J., Holcomb, P. J., Mitra, P., & Gabrieli, J. D. E. (2014). Masked priming and ERPs dissociate maturation of orthographic and semantic components of visual word recognition in children. Psychophysiology, 51(2), 136–141. https://doi.org/10.1111/psyp.12164. (PMID: 10.1111/psyp.1216424313638)
Emmorey, K., Midgley, K. J., Kohen, C. B., Sehyr, Z. S., & Holcomb, P. J. (2017). The N170 ERP component differs in laterality, distribution, and association with continuous reading measures for deaf and hearing readers. NeuroPsychologia, 106, 298–309. https://doi.org/10.1016/j.neuropsychologia.2017.10.001. (PMID: 10.1016/j.neuropsychologia.2017.10.001289862685694363)
Fu, Y., Wang, H., Guo, H., Bermúdez-Margaretto, B., & Domínguez Martínez, A. (2021). What, where, when and how of visual word recognition: A bibliometrics review. Language and Speech, 64(4), 900–929. https://doi.org/10.1177/0023830920974710. (PMID: 10.1177/002383092097471033245012)
Grainger, J. (2018). Orthographic processing: A “mid-level” vision of reading. Quarterly Journal of Experimental Psychology 2006, 71(2), 335–359. https://doi.org/10.1080/17470218.2017.1314515. (PMID: 10.1080/17470218.2017.131451528376655)
Grainger, J., & Holcomb, P. J. (2009a). An ERP investigation of orthographic priming with relative-position and absolute-position primes. Brain Research, 1270, 45–53. https://doi.org/10.1016/j.brainres.2009.02.080. (PMID: 10.1016/j.brainres.2009.02.080192859662707355)
Grainger, J., & Holcomb, P. J. (2009b). Watching the word go by: On the time-course of component processes in visual word recognition. Language and Linguistics Compass, 3(1), 128–156. https://doi.org/10.1111/j.1749-818X.2008.00121.x. (PMID: 10.1111/j.1749-818X.2008.00121.x197500252740997)
Grainger, J., Tydgat, I., & Isselé, J. (2010). Crowding affects letters and symbols differently. Journal of Experimental Psychology: Human Perception and Performance, 36(3), 673–688. https://doi.org/10.1037/a0016888. (PMID: 10.1037/a001688820515197)
Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A vision of reading. Trends in Cognitive Sciences, 20(3), 171–179. https://doi.org/10.1016/j.tics.2015.12.008. (PMID: 10.1016/j.tics.2015.12.00826809725)
Gros, H., Doyon, B., Rioual, K., & Celsis, P. (2002). Automatic grapheme processing in the left occipitotemporal cortex. Neuroreport, 13(8), 1021–1024. https://doi.org/10.1097/00001756-200206120-00008. (PMID: 10.1097/00001756-200206120-0000812060800)
Hashemi, A., Pachai, M. V., Bennett, P. J., & Sekuler, A. B. (2018). The role of horizontal facial structure on the N170 and N250. Vision Research, 157, 12–23. https://doi.org/10.1016/j.visres.2018.02.006. (PMID: 10.1016/j.visres.2018.02.00629555299)
Holcomb, P. J., Grainger, J., & O’Rourke, T. (2002). An electrophysiological study of the effects of orthographic neighborhood size on printed word perception. Journal of Cognitive Neuroscience, 14(6), 938–950. https://doi.org/10.1162/089892902760191153. (PMID: 10.1162/08989290276019115312191460)
Kiefer, M. (2008). Top-down modulation of unconscious “automatic” processes: A gating framework. Advances in Cognitive Psychology, 3(1–2), 289–306. https://doi.org/10.2478/v10053-008-0032-2. (PMID: 10.2478/v10053-008-0032-2205175152864982)
Korinth, S. P., Gerstenberger, K., & Fiebach, C. J. (2020). Wider letter-spacing facilitates word processing but Impairs reading rates of fast readers. Frontiers in Psychology, 11, 444. https://doi.org/10.3389/fpsyg.2020.00444. (PMID: 10.3389/fpsyg.2020.00444322564287090332)
Kwon, M., Legge, G. E., & Dubbels, B. R. (2007). Developmental changes in the visual span for reading. Vision Research, 47(22), 2889–2900. https://doi.org/10.1016/j.visres.2007.08.002. (PMID: 10.1016/j.visres.2007.08.002178458102052928)
Luck, S. (2005). An Introduction to the Event-Related Potential Technique (2nd ed.). MIT Press.
Łuniewska, M., Wójcik, M., & Jednoróg, K. (2022). The effect of inter-letter spacing on reading performance and eye movements in typically reading and dyslexic children. Learning and Instruction, 80, 101576. https://doi.org/10.1016/j.learninstruc.2021.101576. (PMID: 10.1016/j.learninstruc.2021.101576)
Marcet, A., & Perea, M. (2018). Visual letter similarity effects during sentence reading: Evidence from the boundary technique. Acta Psychologica, 190, 142–149. https://doi.org/10.1016/j.actpsy.2018.08.007. (PMID: 10.1016/j.actpsy.2018.08.00730119047)
Marinus, E., Mostard, M., Segers, E., Schubert, T. M., Madelaine, A., & Wheldall, K. (2016). A special font for people with dyslexia: Does it work and if so, why? Dyslexia, 22(3), 233–244. https://doi.org/10.1002/dys.1527. (PMID: 10.1002/dys.152727194598)
Marzouki, Y., & Grainger, J. (2014). Effects of stimulus duration and inter-letter spacing on letter-in-string identification. Acta Psychologica, 148, 49–55. https://doi.org/10.1016/j.actpsy.2013.12.011. (PMID: 10.1016/j.actpsy.2013.12.01124486806)
Maurer, U., & McCandliss, B. D. (2007). The development of visual expertise for words: The contribution of electrophysiology. Behavioral and Brain Functions, 81, 57–77. https://doi.org/10.4324/9780203810064-9. (PMID: 10.4324/9780203810064-9)
Maurer, U., Brandeis, D., & McCandliss, B. D. (2005). Fast, visual specialization for reading in English revealed by the topography of the N170 ERP response. Behavioral and Brain Functions: BBF, 1, 13. https://doi.org/10.1186/1744-9081-1-13. (PMID: 10.1186/1744-9081-1-13160911381208852)
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4. (PMID: 10.1016/0028-3932(71)90067-45146491)
Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object recognition. Nature Neuroscience, 11(10), 1129–1135. https://doi.org/10.1038/nn.2187. (PMID: 10.1038/nn.2187188281912772078)
Perea, M., & Gomez, P. (2012a). Increasing interletter spacing facilitates encoding of words. Psychonomic Bulletin & Review, 19(2), 332–338. https://doi.org/10.3758/s13423-011-0214-6. (PMID: 10.3758/s13423-011-0214-6)
Perea, M., & Gomez, P. (2012b). Subtle increases in interletter spacing facilitate the encoding of words during normal reading. PloS One, 7(10), e47568. https://doi.org/10.1371/journal.pone.0047568. (PMID: 10.1371/journal.pone.0047568230821783474730)
Perea, M., Moret-Tatay, C., & Gómez, P. (2011). The effects of interletter spacing in visual-word recognition. Acta Psychologica, 137(3), 345–351. https://doi.org/10.1016/j.actpsy.2011.04.003. (PMID: 10.1016/j.actpsy.2011.04.00321545978)
Perea, M., Panadero, V., Moret-Tatay, C., & Gómez, P. (2012). The effects of inter-letter spacing in visual-word recognition: Evidence with young normal readers and developmental dyslexics. Learning and Instruction, 22(6), 420–430. https://doi.org/10.1016/j.learninstruc.2012.04.001. (PMID: 10.1016/j.learninstruc.2012.04.001)
Perea, M., Giner, L., Marcet, A., & Gomez, P. (2016). Does extra interletter spacing help text reading in skilled adult readers? The Spanish Journal of Psychology, 19, E26. https://doi.org/10.1017/sjp.2016.28. (PMID: 10.1017/sjp.2016.2827210581)
Pollatsek, A., & Well, A. D. (1995). On the use of counterbalanced designs in cognitive research: A suggestion for a better and more powerful analysis. Journal of Experimental Psychology Learning Memory, and Cognition, 21(3), 785–794. https://doi.org/10.1037/0278-7393.21.3.785. (PMID: 10.1037/0278-7393.21.3.7857602272)
Qiao, E., Vinckier, F., Szwed, M., Naccache, L., Valabrègue, R., Dehaene, S., & Cohen, L. (2010). Unconsciously deciphering handwriting: Subliminal invariance for handwritten words in the visual word form area. NeuroImage, 49(2), 1786–1799. https://doi.org/10.1016/j.neuroimage.2009.09.034. (PMID: 10.1016/j.neuroimage.2009.09.03419781648)
Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20, 873–922. https://doi.org/10.1162/neco.2008.12-06-420. (PMID: 10.1162/neco.2008.12-06-420180859912474742)
Rosen, S., Chakravarthi, R., & Pelli, D. G. (2014). The Bouma law of crowding, revised: Critical spacing is equal across parts, not objects. Journal of Vision, 14(6), 10. https://doi.org/10.1167/14.6.10. (PMID: 10.1167/14.6.10255022304527718)
Rossion, B., Joyce, C. A., Cottrell, G. W., & Tarr, M. J. (2003). Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. NeuroImage, 20(3), 1609–1624. https://doi.org/10.1016/j.neuroimage.2003.07.010. (PMID: 10.1016/j.neuroimage.2003.07.01014642472)
Sacchi, E., & Laszlo, S. (2016). An event-related potential study of the relationship between N170 lateralization and phonological awareness in developing readers. Neuraopsychologia, 91, 415–425. https://doi.org/10.1016/j.neuropsychologia.2016.09.001. (PMID: 10.1016/j.neuropsychologia.2016.09.001)
Sacchi, E., Mirchin, R., & Laszlo, S. (2018). An Event-Related Potential study of letter spacing during visual word recognition. Brain Research, 1684, 9–20. https://doi.org/10.1016/j.brainres.2018.01.028. (PMID: 10.1016/j.brainres.2018.01.02829409766)
Sánchez-Vincitore, L. V., Avery, T., & Froud, K. (2017). Word-related N170 responses to implicit and explicit reading tasks in neoliterate adults. International Journal of Behavioral Development, 42(3), 321–332. https://doi.org/10.1177/0165025417714063. (PMID: 10.1177/0165025417714063)
Sanocki, T., & Dyson, M. C. (2012). Letter processing and font information during reading: Beyond distinctiveness, where vision meets design. Attention, Perception & Psychophysics, 74(1), 132–145. https://doi.org/10.3758/s13414-011-0220-9. (PMID: 10.3758/s13414-011-0220-9)
Schweinberger, S. R., Huddy, V., & Burton, A. M. (2004). N250r: A face-selective brain response to stimulus repetitions. NeuroReport, 15(9), 1501–1505. https://doi.org/10.1097/01.wnr.0000131675.00319.42. (PMID: 10.1097/01.wnr.0000131675.00319.4215194883)
Seger, C. A., Poldrack, R. A., Prabhakaran, V., Zhao, M., Glover, G. H., & Gabrieli, J. D. (2000). Hemispheric asymmetries and individual differences in visual concept learning as measured by functional MRI. Neuropsychologia, 38(9), 1316–1324. https://doi.org/10.1016/s0028-3932(00)00014-2. (PMID: 10.1016/s0028-3932(00)00014-210865107)
Simon, G., Petit, L., Bernard, C., & Rebaï, M. (2007). N170 ERPs could represent a logographic processing strategy in visual word recognition. Behavioral and Brain Functions, 3(1), 21. https://doi.org/10.1186/1744-9081-3-21. (PMID: 10.1186/1744-9081-3-21174515981884163)
Slattery, T. J., Yates, M., & Angele, B. (2016). Interword and interletter spacing effects during reading revisited: Interactions with word and font characteristics. Journal of Experimental Psychology. Applied, 22(4), 406–422. https://doi.org/10.1037/xap0000104. (PMID: 10.1037/xap000010427936854)
Spinelli-, D., De Luca, M., Judica, A., & Zoccolotti, P. (2002). Crowding effects on word identification in developmental dyslexia. Cortex, 38(2), 179–200. https://doi.org/10.1016/s0010-9452(08)70649-x. (PMID: 10.1016/s0010-9452(08)70649-x12056688)
Strijkers, K., Bertrand, D., & Grainger, J. (2015). Seeing the same words differently: The time course of automaticity and top–down intention in reading. Journal of Cognitive Neuroscience, 27(8), 1542–1551. https://doi.org/10.1162/jocn_a_00797. (PMID: 10.1162/jocn_a_0079725761003)
Thesen, T., McDonald, C. R., Carlson, C., Doyle, W., Cash, S., Sherfey, J., Felsovalyi, O., Girard, H., Barr, W., Devinsky, O., Kuzniecky, R., & Halgren, E. (2012). Sequential then interactive processing of letters and words in the left fusiform gyrus. Nature Communications, 3, 1284. https://doi.org/10.1038/ncomms2220. (PMID: 10.1038/ncomms222023250414)
Tydgat, I., & Grainger, J. (2009). Serial position effects in the identification of letters, digits, and symbols. Journal of Experimental Psychology Human Perception and Performance, 35(2), 480–498. https://doi.org/10.1037/a0013027. (PMID: 10.1037/a001302719331502)
Valdois, S., Roulin, J. L., & Line Bosse, M. (2019). Visual attention modulates reading acquisition. Vision Research, 165, 152–161. https://doi.org/10.1016/j.visres.2019.10.011. (PMID: 10.1016/j.visres.2019.10.01131751900)
van den Boer, M., & Hakvoort, B. E. (2015). Default spacing is the optimal spacing for word reading. The Quarterly Journal of Experimental Psychology, 68(4), 697–709. https://doi.org/10.1080/17470218.2014.964272. (PMID: 10.1080/17470218.2014.96427225210997)
Vergara-Martínez, M., Gomez, P., & Perea, M. (2020). Should I stay or should I go? An ERP analysis of two-choice versus go/no-go response procedures in lexical decision. Journal of Experimental Psychology Learning, Memory, and Cognition, 46(11), 2034–2048. https://doi.org/10.1037/xlm0000942. (PMID: 10.1037/xlm000094232730055)
Vergara-Martínez, M., Gutierrez-Sigut, E., Perea, M., Gil-López, C., & Carreiras, M. (2021). The time course of processing handwritten words: an ERP investigation. Neuropsychologia, 159, 107924. https://doi.org/10.1016/j.neuropsychologia.2021.107924. (PMID: 10.1016/j.neuropsychologia.2021.10792434175372)
Vinckier, F., Qiao, E., Pallier, C., Dehaene, S., & Cohen, L. (2011). The impact of letter spacing on reading: A test of the bigram coding hypothesis. Journal of Vision, 11(6), 1–21. https://doi.org/10.1167/11.6.8. (PMID: 10.1167/11.6.821566152)
Weiss, B., Knakker, B., & Vidnyánszky, Z. (2016). Visual processing during natural reading. Scientific Reports, 6, 26902. https://doi.org/10.1038/srep26902. (PMID: 10.1038/srep26902272311934882504)
Winsler, K., Midgley, K. J., Grainger, J., & Holcomb, P. J. (2018). An electrophysiological megastudy of spoken word recognition. Language, Cognition and Neuroscience, 33(8), 1063–1082. https://doi.org/10.1080/23273798.2018.1455985. (PMID: 10.1080/23273798.2018.1455985339126208078007)
Winsler, K., Grainger, J., & Holcomb, P. J. (2022). On letter-specific crowding and reading: Evidence from ERPs. Neuropsychologia, 176, 108396. https://doi.org/10.1016/j.neuropsychologia.2022.108396. (PMID: 10.1016/j.neuropsychologia.2022.10839636270326)
Yu, D., Cheung, S. H., Legge, G. E., & Chung, S. T. (2007). Effect of letter spacing on visual span and reading speed. Journal of Vision, 7(2), 1–10. https://doi.org/10.1167/7.2.2. (PMID: 10.1167/7.2.2)
Yum, Y. N., Holcomb, P. J., & Grainger, J. (2011). Words and pictures: An electrophysiological investigation of domain specific processing in native Chinese and English speakers. Neuropsychologia, 49(7), 1910–1922. https://doi.org/10.1016/j.neuropsychologia.2011.03.018. (PMID: 10.1016/j.neuropsychologia.2011.03.018214399913100363)
Zorzi, M., Barbiero, C., Facoetti, A., Lonciari, I., Carrozzi, M., Montico, M., Bravar, L., George, F., Pech-Georgel, C., & Ziegler, J. C. (2012). Extra-large letter spacing improves reading in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11455–11459. https://doi.org/10.1073/pnas.1205566109. (PMID: 10.1073/pnas.1205566109226658033396504)
Grant Information:
CIAICO/2021/172 Valencian Government; MCIN/AEI/10.13039/501100011033 Spanish Ministry of Science, Innovation and Universities; PID2020-116740GB-I00 Spanish Ministry of Science, Innovation and Universities
Contributed Indexing:
Keywords: Crowding; Event-related potentials; Inter-letter spacing; Visual word recognition
Entry Date(s):
Date Created: 20240923 Date Completed: 20241031 Latest Revision: 20241125
Update Code:
20260130
PubMed Central ID:
PMC11525266
DOI:
10.3758/s13415-024-01221-9
PMID:
39313747
Database:
MEDLINE

*Further Information*

*Previous behavioral studies have shown that inter-letter spacing affects visual word recognition and reading. While condensed spacing may hinder the early stages of letter encoding because of increased crowding effects, the impact of expanded inter-letter spacing is still unclear. To examine the electrophysiological signature of inter-letter spacing on visual word recognition, we presented words in three different inter-letter spacing conditions (default, condensed [-1.5 points] or expanded [+1.5 points]) in an event-related potentials go/no-go semantic categorization task. Our focus was on the N170, an event-related potentials component associated with the early encoding of orthographic information, which also is sensitive to crowding effects. Results revealed that the N170 amplitude reached the largest values for the condensed condition than for the default and expanded spacing conditions, which did not differ. While increased crowding impacted the early encoding of orthographic information, extra letter spacing (compared with default spacing) did not. This outcome is consistent with the Modified Receptive Field hypothesis, in which letter receptors adapt their size to cope with letter crowding. These findings reveal that reducing the space between letters more than the default spacing impairs the ability to process written words, whereas slightly expanding the space between letters does not provide any additional benefit.
(© 2024. The Author(s).)*